
- •Глава 7
- •Часть II. Методы статистического вывода; проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода статистическое решение и вероятность ошибки
- •Глава 7- введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Связь Хи y Рис. 8.1. Классификация методов статистического вывода о связи двух явлений и зависимости от типа шкал, в которых они измерены
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Анализ классификаций
- •Анализ таблиц сопряженности
- •Общий случай: число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Сравнение двух независимых выборок
- •Сравнение 2-х зависимых выборок
- •Глава 8. Выбор метода статистического вывода
- •Сравнение более двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9
- •Часть II, методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Анализ классификации:
- •Распределений Две градации
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере: биномиальный критерий
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных Число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Независимые выборки
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Повторные измерения
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Глава 10. Корреляционный анализ
- •Глава 11
- •Глава II. Параметрические методы сравнения двух вы1юрок
- •Глава 11. Параметрические методы сравнения двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава II. Параметрические методы сравнения двух выборок критерий г-стьюдента для зависимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава It. Параметрические методы сравнения двух выборок
- •Глава 12
- •Общие замечания
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий (7-Манна-Уитни
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий г-Вилкоксона
- •Глава 12. Непараметрические методы сравнения выборок
- •Сравнение более двух независимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий я-Краскала-Уоллеса
- •Часть II. Методы статистического вывода: проверка гипотез
- •Сравнение более двух зависимых выборок
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез Обработка на компьютере: критерий х2-Фридмана
- •Глава 13
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Однофакторный anova
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova) Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
Сравнение двух независимых выборок
Условия применения: признак измерен у объектов (испытуемых), каждый из которых принадлежит к одной из двух независимых выборок.
ПРИМЕР
Исследование различий между юношами и девушками по тревожности, измеренной в количественной (ранговой, метрической) шкале. Структура данных:
№ |
ЛГ(пол) |
У(тревожность) |
1 |
1 |
10 |
2 |
2 |
9 |
3 |
2 |
3 |
4 |
1 |
8 |
|
|
|
N |
1 |
6 |
Методы:
Y— метрическая переменная: сравнение двух средних значений (параметрический критерий /-Стьюдента для независимых выборок).
Условия применения: признак измерен в (а) метрической шкале, (б) дисперсии двух выборок гомогенны (статистически достоверно не различаются). Если не выполняется хотя бы одно из этих условий, то применяется непараметрический критерий £/-Манна-Уитни.
Дополнительно: возможно сравнение двух дисперсий (параметрический критерий F-Фишера).
Y— ранговая (порядковая) переменная: сравнение двух независимых выборок по уровню выраженности порядковой или бинарной переменной (критерий £/-Манна-Уитни, критерий серий).
Сравнение 2-х зависимых выборок
Условия применения: (а) признак измерен у объектов (испытуемых), каждый из которых принадлежит к одной из двух зависимых выборок: либо при-
118
Глава 8. Выбор метода статистического вывода
знак измерен дважды на одной и той же выборке, либо каждому испытуемому из одной выборки поставлен в соответствие по определенному критерию испытуемый из другой выборки; (б) измерения положительно коррелируют. Если эти условия не выполняются, то выборки следует признать независимыми.
ПРИМЕРЫ
1. Изучался эффект социально-психологического тренинга. Каждому ученику класса (численностью jV) задавался вопрос: «Как часто твое мнение совпадает с мнением твоих одноклассников», отвечать на который предлагалось при помощи 10-балльной шкалы. Ученики отвечали на вопрос дважды: до (Хх) и после (Х2) тренинга.
Структура данных:
№ |
|
х2 |
1 |
8 |
10 |
2 |
8 |
9 |
3 |
3 |
4 |
4 |
5 |
5 |
|
|
|
N |
6 |
7 |
2. Изучалось различие в самооценке единства мнений в супружеских парах (всего N пар) между мужьями и их женами. Для этого на вопрос «Как часто Ваше мнение совпадаете мнением супруги (супруга)» при помощи 10-балльной шкалы отвечали мужья каждой пары (X]) и их жены (Х2).
Структура данных та же, что и для предыдущего примера, но № — номер пары.
Методы:
Y— метрическая переменная: сравнение двух средних значений (параметрический критерий ^-Стьюдента для зависимых выборок).
Условие применения: признак измерен в метрической шкале. Если это условие не выполняется, то применяется непараметрический критерий Г-Вилкоксона.
Y— ранговая (порядковая) переменная: сравнение двух зависимых выборок по уровню выраженности порядковой или бинарной переменной (критерий Г-Вилкоксона, критерий знаков).