
- •Часть 1
- •1. Задачи, решаемые электронной техникой, и элементы, необходимые для их решения
- •1.1. Электрические сигналы. Временное и спектральное представление
- •1.2. Усиление электрических сигналов
- •1.3. Модуляция сигналов
- •1.3.1. Амплитудная модуляция
- •1.3.2. Импульсно-кодовая модуляция
- •1.3.3. Широтно-импульсная модуляция
- •1.4. Фильтрация сигналов
- •1.5. Хранение и отображение информации
- •1.6. Преобразование электрической энергии
- •А) б) Рис. 1.21. Схема простейшего инвертора (а) и временная диаграмма напряжения в нагрузке (б) Основные результаты 1 главы
- •2. Математический аппарат описания электронных элементов
- •2.1. Описание нелинейных элементов
- •2.2. Линеаризация нелинейных уравнений
- •Линеаризованное уравнение нелинейного элемента
- •2.4. Частотный анализ линеаризованных цепей
- •2.5. Временной анализ линеаризованных цепей
- •Основные результаты 2 главы
- •3. Полупроводники – основа современной элементной базы электроники
- •3.1. Преимущества полупроводниковых элементов перед электровакуумными
- •3.2. Физические основы электропроводности полупроводников
- •3.3. Электропроводность беспримесного (собственного) полупроводника
- •3.4. Электропроводность примесных полупроводников
- •3.4.1. Донорная примесь
- •3.4.2. Акцепторная примесь
- •3.6. Инерционность р-п-перехода
- •3.6.1. Зарядная емкость р-п-перехода
- •3.6.2. Диффузионная емкость
- •3.7. Пробой р-п-перехода
- •3.7.1. Тепловой пробой
- •3.7.2. Электрический пробой
- •3.8. Математическая модель р-п-перехода
- •3.9. Переход металл-полупроводник
- •Основные результаты 3 главы
- •4. Многопереходные электронные элементы
- •4.1. Полупроводниковые триоды (биполярные транзисторы)
- •4.2. Активный режим работы биполярного транзистора
- •4.2. Статические характеристики биполярного транзистора для активного режима
- •4.3. Инерционность биполярного транзистора
- •4.4. Пробой коллекторного перехода
- •4.5. Пробой эмиттерного перехода
- •4.6. Нелинейная модель биполярного транзистора
- •4.7. Линеаризованная модель биполярного транзистора
- •4.8. Ключевой режим биполярного транзистора
- •4.9. Полевые транзисторы
- •4.10. Полевые транзисторы с управляющим р-п-переходом
- •4.12. Тиристоры
- •Д ля регулирования в течение каждой полуволны знакопеременного ис
- •Основные результаты 4 главы
- •5. Основы теории электронных усилителей
- •5.1. Общие положения
- •5.2. Обратная связь в усилительных устройствах
- •5.3. Операционные усилители (оу)
- •5.4. Усилители мощности
- •5.4.1. Линейные усилители мощности
- •5.4.2. Усилители мощности ключевого типа
- •6. Автогенераторы
- •Автогенераторы гармонических колебаний
- •7. Источники вторичного электропитания электронных устройств
- •7.1. Классическая схема вторичного источника (без преобразования частоты сети)
- •7.2. Вторичные источники с преобразованием частоты сети
- •7.3. Функциональные элементы вторичных источников электропитания
- •7.3.1. Преобразователи переменного напряжения
- •7.3.2. Стабилизаторы постоянного напряжения (спн)
- •Оглавление
- •Электроника
- •Часть 1 Электронная база, аналоговые функциональные устройства
7.3. Функциональные элементы вторичных источников электропитания
7.3.1. Преобразователи переменного напряжения
Практические схемы преобразователя представляют сочетание выпрямителя и фильтра. Простейший вариант однофазного однополупериодного выпрямителя с емкостным фильтром приведен на рис. 7.3а и на рис. 7.3б - диаграммы токов и напряжений в установившемся режиме.
Диод VD находится под разностью потенциалов входного U и выходного U= напряжений.
а) б)
Рис.
7.3. Схема однополупериодного выпрямителя
с емкостным фильтром:
а) функциональная
схема; б) временные диаграммы
Обеспечение приемлемо малого уровня пульсации достигается выбором конденсатора фильтра достаточно большой емкости.
Рис.
7.4. Схема двухполупериодного
мостового
выпрямителя
Поэтому на практике находят применение в основном двухполупериодные выпрямители, в которых эффект намагничивания практически отсутствует (рис. 7.4).
Рис.
7.5. Диаграммы входного тока и выходного
напряжения
двухполупериодного выпрямителя
Из рис. 7.5 следует, что при полной симметрии диодных плеч постоянная составляющая во входном токе i1 отсутствует. Частота пульсаций выходного напряжения в два раза выше, чем в однополупериодном выпрямителе. Это позволяет или снизить уровень пульсаций при неизменной емкости фильтра, или уменьшить емкость при неизменном уровне пульсаций.
Недостатком мостовой схемы является увеличение потери мощности за счет последовательного включения в цепь двух диодов. При токе нагрузки в несколько десятков ампер указанные потери могут стать неприемлемыми. В этом случае можно использовать двухполупериодную схему на основе трансформатора со средней точкой (рис. 7.6), что и является, в свою очередь, главным неудобством этой схемы.
В выпрямителях с низким значением выходного напряжения падение напряжения на открытом кремниевом диоде может стать соизмеримым с выходным напряжением. Для повышения КПД таких устройств в качестве выпрямительных используются диоды Шоттки, обладающие существенно меньшим падением напряжения.
Рис.
7.6. Двухполупериодный
выпрямитель
на трансформа-
торе
со средней точкой