
- •Часть 1
- •1. Задачи, решаемые электронной техникой, и элементы, необходимые для их решения
- •1.1. Электрические сигналы. Временное и спектральное представление
- •1.2. Усиление электрических сигналов
- •1.3. Модуляция сигналов
- •1.3.1. Амплитудная модуляция
- •1.3.2. Импульсно-кодовая модуляция
- •1.3.3. Широтно-импульсная модуляция
- •1.4. Фильтрация сигналов
- •1.5. Хранение и отображение информации
- •1.6. Преобразование электрической энергии
- •А) б) Рис. 1.21. Схема простейшего инвертора (а) и временная диаграмма напряжения в нагрузке (б) Основные результаты 1 главы
- •2. Математический аппарат описания электронных элементов
- •2.1. Описание нелинейных элементов
- •2.2. Линеаризация нелинейных уравнений
- •Линеаризованное уравнение нелинейного элемента
- •2.4. Частотный анализ линеаризованных цепей
- •2.5. Временной анализ линеаризованных цепей
- •Основные результаты 2 главы
- •3. Полупроводники – основа современной элементной базы электроники
- •3.1. Преимущества полупроводниковых элементов перед электровакуумными
- •3.2. Физические основы электропроводности полупроводников
- •3.3. Электропроводность беспримесного (собственного) полупроводника
- •3.4. Электропроводность примесных полупроводников
- •3.4.1. Донорная примесь
- •3.4.2. Акцепторная примесь
- •3.6. Инерционность р-п-перехода
- •3.6.1. Зарядная емкость р-п-перехода
- •3.6.2. Диффузионная емкость
- •3.7. Пробой р-п-перехода
- •3.7.1. Тепловой пробой
- •3.7.2. Электрический пробой
- •3.8. Математическая модель р-п-перехода
- •3.9. Переход металл-полупроводник
- •Основные результаты 3 главы
- •4. Многопереходные электронные элементы
- •4.1. Полупроводниковые триоды (биполярные транзисторы)
- •4.2. Активный режим работы биполярного транзистора
- •4.2. Статические характеристики биполярного транзистора для активного режима
- •4.3. Инерционность биполярного транзистора
- •4.4. Пробой коллекторного перехода
- •4.5. Пробой эмиттерного перехода
- •4.6. Нелинейная модель биполярного транзистора
- •4.7. Линеаризованная модель биполярного транзистора
- •4.8. Ключевой режим биполярного транзистора
- •4.9. Полевые транзисторы
- •4.10. Полевые транзисторы с управляющим р-п-переходом
- •4.12. Тиристоры
- •Д ля регулирования в течение каждой полуволны знакопеременного ис
- •Основные результаты 4 главы
- •5. Основы теории электронных усилителей
- •5.1. Общие положения
- •5.2. Обратная связь в усилительных устройствах
- •5.3. Операционные усилители (оу)
- •5.4. Усилители мощности
- •5.4.1. Линейные усилители мощности
- •5.4.2. Усилители мощности ключевого типа
- •6. Автогенераторы
- •Автогенераторы гармонических колебаний
- •7. Источники вторичного электропитания электронных устройств
- •7.1. Классическая схема вторичного источника (без преобразования частоты сети)
- •7.2. Вторичные источники с преобразованием частоты сети
- •7.3. Функциональные элементы вторичных источников электропитания
- •7.3.1. Преобразователи переменного напряжения
- •7.3.2. Стабилизаторы постоянного напряжения (спн)
- •Оглавление
- •Электроника
- •Часть 1 Электронная база, аналоговые функциональные устройства
1.3. Модуляция сигналов
Модуляция - это преобразование спектра сигнала с целью удобства его передачи, усиления, хранения или обработки. В электронике практически используются различные способы модуляции, которые детально исследуются в специальных курсах. Здесь мы рассмотрим наиболее распространенные виды модуляции, выясняя, какие электронные элементы для этого необходимы.
1.3.1. Амплитудная модуляция
Исторически первым применением амплитудной модуляции явилась задача обеспечения одновременной работы в эфире нескольких радиостанций, передающих сигналы с близкими спектрами (речь, музыка). Суть амплитудной модуляции заключается в переносе полезной информации, заложенной в низкочастотном сообщении, на высокочастотное колебание (несущую частоту). Таким образом, выбирая для каждого сообщения “свою” несущую частоту, можно рассредоточить все сообщения по радиоканалу так, что на приемном конце их легко отличить друг от друга.
Аналогичная задача решается и при одновременной передаче нескольких телефонных переговоров по одному кабелю. Для упрощения анализа рассмотрим амплитудную модуляцию одно-тонального (гармонического) сигнала S(t)=Smcos t.
Рис.
1.12. Схема амплитуд-
ного
модулятора на основе перемножителя
S*=S(t) U0,
где - нормирующий множитель с размерностью В-1, или
S*= S(t)Umcos t=Um(t)cos t (2.3)
Из (2.3) следует, что S* - это уже высокочастотное колебание, амплитуда которого изменяется пропорционально полезному сигналу S(t). Тем самым информация с низкочастотного исходного сигнала “перенесена” на высокочастотное колебание. Спектр модулированного высокочастотного колебания имеет вид
Рис.
1.13. Спектры исходного S,
несущего U0
и
модулированного S*
колебания
=2SmUm cos( - ) t+ SmUm cos(+) t
и изображен на рис. 1.13, а принцип “рассредоточения” сигналов по каналу связи иллюстрируется на рис. 1.14.
Рис.
1.14. Принцип распределения иссле-
дования
исходных сигналов S1(t),
S2(t)
с близким спектром по частотному
диапа-
зону канала связи
y=ax+bx2+cx3+...
Легко показать, что квадратичный член полинома может выполнить функцию перемножения, так как
х2=[S(t)+U0]2=S(t)2+U02+2 S(t)U0.
Не останавливаясь на операции восстановления исходного сообщения S(t), подчеркнем, что она тоже, как и любое другое преобразование спектра, выполняется с помощью нелинейных элементов.
1.3.2. Импульсно-кодовая модуляция
Известно, что компьютеры оперируют с сигналами, представленными дискретными двоичными последовательностями (высокий уровень, низкий уровень, логический ноль, логическая единица) , в которых закодирована исходная информация. В то же время большинство физических объектов (датчиков) генерирует непрерывные (аналоговые) сигналы, например, речь человека. Для обработки аналоговых сигналов с помощью компьютера необходимо его преобразовать в дискретную двоичную последовательность, естественно, с сохранением полезной информации. Кроме того, двоичные последовательности удобнее передавать по каналу связи, поскольку они не подвержены искажениям, например, вносимым за счет нелинейности канала связи, их легче закодировать как с целью обеспечения конфиденциальности информации, так и с целью повышения помехозащищенности. Дискретные двоичные последовательности можно хранить в огромном объеме на миниатюрных носителях информации (компакт-дисках).
Рис.
1.15. Схема ампли-
тудного модулятора
на ос-
нове нелинейного элемента
с
полиномиальной харак-
теристикой
Двоичный код, отображающий число квантов в отсчете, - это кодовое слово, а последовательность таких слов - цифровое представление аналогового сигнала.
На рис. 1.16 отражен принцип ИКМ для трехразрядного двоичного кода (23=8 квантов): S(ti) - мгновенные значения сигнала в тактируемые моменты времени.
Рис. 1.16. Принцип
ИКМ
Устройство выборки и хранения (УВХ) до следующего временного такта в простейшем случае может быть представлено в виде конденсатора, который с помощью быстродействующего электронного ключа в тактируемые моменты времени “мгновенно” подключается к источнику сигнала, “запоминая” его значение в данный момент. После размыкания ключа конденсатор “хранит” заряд до следующего подключения (рис. 1.17).
Рис. 1.17. Схема устройства выбор-
ки-хранения
аналогового сигнала.
Появление в спектре преобразованного сигнала новых составляющих (обогащение спектра) является признаком нелинейного характера преобразования при ИКМ, как и при всех других видах модуляции. Роль нелинейного элемента в ИКМ выполняет ключ в УВХ.