Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ELECTR-1.DOC
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
16.32 Mб
Скачать

3.3. Электропроводность беспримесного (собственного) полупроводника

Рис. 3.1. Механизм возникновения свободных носителей

В беспримесном полупроводнике при абсолютном нуле (Т=0К) все уровни валентной зоны заняты, а зоны проводимости - свободны, свободных носителей нет, электропроводность равна нулю. При повышении температуры (Т0К) отдельные электроны приобретают энергию, достаточную для перехода из валентной зоны в зону проводимости, где электрон становится свободным и может двигаться под воздействием электрического поля (рис. 3.1). Но при уходе из валентной зоны электрон оставляет там “вакантное” место - освободившийся разрешенный уровень, который может быть занят соседним электроном валентной зоны, то есть появляется возможность движения свободных зарядов и в валентной зоне. Поэтому в результате акта перехода одного электрона из валентной зоны в зону проводимости в полупроводнике появляется два свободных носителя - электрон (п) в зоне проводимости и свободный уровень в валентной зоне - дырка (р). В собственном полупроводнике число свободных электронов (пi ) и число дырок (рi ) равны

пi = рi (3.1)

Число свободных носителей при данной температуре Т определяется плотностью разрешенных уровней в каждой зоне и вероятностью нахождения электрона на определенном уровне и подчиняется соотношению

, (3.2)

где А - коэффициент, отражающий свойства материала;

з - ширина запрещенной зоны в вольтах;

Т - температурный потенциал:

где k-постоянная Больцмана, q - заряд электрона.

При комнатной температуре Т  0.025 В.

Для наиболее распространенных полупроводников: германия (з=0.66В), кремния (з = 1.12 В), поскольку з /2Т 1, значение экспоненты в (3.2) очень сильно меняется от приращений ее показателя.

Отсюда следует два важных вывода:

  • электропроводность собственного полупроводника очень резко зависит от ширины запрещенной зоны, так при Т=300К для германия пi = 2.51013, для кремния пi = 21010, то есть электропроводность кремния на 3 порядка меньше электропроводности германия;

  • электропроводность собственного полупроводника очень сильно зависит от температуры (из-за влияния Т на показатель экспоненты). Температурная зависимость электропроводности является существенным фактором, затрудняющим применение полупроводниковых приборов, поскольку температурные изменения могут быть вызваны не только внешней средой, но и внутренним разогревом протекающего через полупроводник тока. Обеспечение эффективного отвода тепла от полупроводника, исключающего его перегрев, является одной из главных задач при проектировании как мощных дискретных полупроводниковых элементов, так и маломощных устройств, содержащих в ограниченном объеме огромное число элементов.

Инициировать электропроводность собственного полупроводника можно не только при его нагреве, но и за счет других энергетических воздействий: оптического, механического, электрического поля высокой напряженности.

На основе этих явлений электронной промышленностью выпускаются специальные полупроводниковые элементы: терморезисторы, фоторезисторы, тензорезисторы, варисторы. Эти элементы меняют свою электропроводность (сопротивление) под воздействием одного из вышеуказанных факторов, то есть являются преобразователями указанных величин - температуры, освещенности, механической деформации, напряженности электрического поля - в электрическое сопротивление. Перечисленные элементы широко используются в системах автоматики, измерительной технике и т.д., каждый из них описывается целым набором характеристик и параметров, имеет много конструктивных модификаций, и для профессионального их применения необходимо обращаться к специальной литературе.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]