
- •Природа пространства и времени
- •Электронное оглавление
- •Глава 1. Классическая теория. Стивен Хокинг 10
- •Глава 2. Структура пространственно-временных сингулярностей. Р. Пенроуз 35
- •Глава 3. Квантовые черные дыры. Стивен Хокинг 44
- •Глава 4. Квантовая теория и пространство-время. Р. Пенроуз 74
- •Глава 5. Квантовая космология. Стивен Хокинг 84
- •Глава 6. Твисторный взгляд на пространство-время. Р. Пенроуз 114
- •Глава 7. Обсуждение. С. Хокинг и р. Пенроуз 127
- •Содержание
- •Предисловие
- •Благодарности
- •Глава 1. Классическая теория. Стивен Хокинг
- •10 · Глава 1 — Стивен Хокинг
- •12 · Глава 1 — Стивен Хокинг
- •14 · Глава 1 — Стивен Хокинг
- •16 · Глава 1 — Стивен Хокинг
- •18 · Глава 1 — Стивен Хокинг
- •20 • Глава 1 — Стивен Хокинг
- •22 • Глава 1 — Стивен Хокинг
- •Определение сингулярностей
- •24 · Глава 1 — Стивен Хокинг
- •Теоремы о сингулярностях:
- •26 · Глава 1 — Стивен Хокинг
- •28 · Глава 1 — Стивен Хокинг
- •Космическая цензура.
- •30 · Глава 1 — Стивен Хокинг
- •Слабая космическая цензура.
- •32 · Глава 1 — Стивен Хокинг
- •Нулевой закон механики черных дыр
- •Нулевой закон термодинамики
- •34 · Глава 1 — Стивен Хокинг
- •Обобщенный второй закон
- •Глава 2. Структура пространственно-временных сингулярностей. Р. Пенроуз
- •38 · Глава 2 — Роджер Пенроуз
- •40 · Глава 2 — Роджер Пенроуз
- •42 · Глава 2 — Роджер Пенроуз
- •44 · Глава 2 — Роджер Пенроуз
- •Гипотеза вейлевской кривизны
- •46 · Глава 2 — Роджер Пенроуз
- •Вопросы и ответы
- •Глава 3. Квантовые черные дыры. Стивен Хокинг
- •50 · Глава 3 — Стивен Хокинг
- •Теорема об отсутствии волос.
- •52 · Глава 3 — Стивен Хокинг
- •54 · Глава 3 — Стивен Хокинг
- •56 · Глава 3 — Стивен Хокинг
- •Тепловое излучение черной дыры
- •Метрика Шварцшильда
- •58 · Глава 3 — Стивен Хокинг
- •60 · Глава 3 — Стивен Хокинг
- •62 · Глава 3 — Стивен Хокинг
- •64 · Глава 3 — Стивен Хокинг
- •66 · Глава 3 — Стивен Хокинг
- •68 · Глава 3 — Стивен Хокинг
- •70 · Глава 3 — Стивен Хокинг
- •72 · Глава 3 — Стивен Хокинг
- •74 · Глава 3 — Стивен Хокинг
- •Глава 4. Квантовая теория и пространство-время. Р. Пенроуз
- •76 · Глава 4 — Роджер Пенроуз
- •78 · Глава 4 — Роджер Пенроуз
- •80 · Глава 4 — Роджер Пенроуз
- •82 · Глава 4 — Роджер Пенроуз
- •84 · Глава 4 — Роджер Пенроуз
- •86 · Глава 4 — Роджер Пенроуз
- •Вопросы и ответы
- •88 · Глава 4 — Роджер Пенроуз
- •Глава 5. Квантовая космология. Стивен Хокинг
- •90 · Глава 5 — Стивен Хокинг
- •Два естественных выбора для интеграла по путям в квантовой гравитации
- •92 · Глава 5 — Стивен Хокинг
- •Предположение об отсутствии границ (Хартль и Хокинг).
- •94 · Глава 5 — Стивен Хокинг
- •96 · Глава 5 — Стивен Хокинг
- •98 · Глава 5 — Стивен Хокинг
- •100 · Глава 5 — Стивен Хокинг Рамка 5.Б. Евклидова метрика
- •102 · Глава 5 — Стивен Хокинг
- •Рамка 5.В. Статическая форма метрики де Ситтера
- •104 · Глава 5 — Стивен Хокинг
- •106 · Глава 5 — Стивен Хокинг
- •108 · Глава 5 — Стивен Хокинг
- •Уравнения Шредингера
- •Основное состояние
- •110 · Глава 5 — Стивен Хокинг
- •112 · Глава 5 — Стивен Хокинг
- •114 · Глава 5 — Стивен Хокинг
- •116 · Глава 5 — Стивен Хокинг
- •118 · Глава 5 — Стивен Хокинг
- •Глава 6. Твисторный взгляд на пространство-время. Р. Пенроуз
- •Классичность кошек.
- •Гипотеза вейлевской кривизны (гвк).
- •122 · Глава 6 — Роджер Пенроуз
- •Твисторы и твисторные пространства
- •124 · Глава 6 — Роджер Пенроуз
- •126 · Глава 6 — Роджер Пенроуз
- •128 · Глава 6 — Роджер Пенроуз
- •Квантованные твисторы
- •130 · Глава 6 — Роджер Пенроуз
- •132 · Глава 6 — Роджер Пенроуз
- •134 · Глава 6 — Роджер Пенроуз
- •Твисторная космология
- •136 · Глава 6 — Роджер Пенроуз
- •Глава 7. Обсуждение. С. Хокинг и р. Пенроуз Стивен Хокинг
- •140 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •142 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •144 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •146 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Ответ Роджера Пенроуза
- •Коты и прочее
- •Виковский поворот
- •148 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Потеря фазового пространства
- •Стивен Хокинг
- •150 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •152 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Ответ Роджера Пенроуза
- •154 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Вопросы и ответы
- •156 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Литература
- •158 · Литература
- •160 · Литература
Глава 5. Квантовая космология. Стивен Хокинг 84
Два естественных выбора для интеграла по путям в квантовой гравитации 85
Рис. 5.1. При расчетах рассеяния мы измеряем характеристики частиц, приходящих и уходящих на бесконечность. 85
Рис. 5.2. Космологические измерения выполняются в конечной области, так что мы можем рассмотреть два типа асимптотически евклидовых метрик: связные (сверху) и несвязные (снизу) 87
Предположение об отсутствии границ (Хартль и Хокинг). 88
Рис. 5.3. Поверхность Σ делит компактное односвязное многообразие Μ на две части М+ и М- 88
Рис. 5.4. Волновая функция выражается с помощью интеграла по путям по М+ 90
Уравнения, являющиеся условиями на импульс 90
Уравнение Уилера — де Витта 90
Рис. 5.5. Два возможных евклидовых решения М+ с границей Σ и соответствующие им действия 91
Рамка 5.А. Метрика Лоренца — де Ситтера 92
Рис. 5.6. Волновая функция как функция радиуса пространства Σ 94
Рамка 5.Б. Евклидова метрика 95
Рис. 5.7. Туннелирование, которое приводит к расширяющейся Вселенной, описывается объединением половины евклидова решения с половиной лоренцевского решения 95
Рамка 5.В. Статическая форма метрики де Ситтера 97
Рис. 5.8. Радиус и температура Вселенной как функция времени в модели горячего Большого взрыва 99
Тензор энергии-импульса скалярного поля 100
Рис. 5.9. Потенциал массивного скалярного поля 100
Уравнения Шредингера 102
Основное состояние 102
Рис. 5.10. Длина волны и радиус горизонта как функции времени в период инфляции 103
Рис. 5.11. Наблюдатель может видеть только часть любой поверхности Σ 104
Рис. 5.12. До того, как наблюдатель сможет увидеть Вселенную целиком, она сколлапсирует к конечной сингулярности 106
Рис. 5.13. Использование гипотезы о тензоре Вейля для различных двух временных концов Вселенной 109
Рис. 5.14. Половина евклидовой 4-сферы, соединенная с малой лоренцевской областью 110
Рис. 5.15. Половина евклидовой 4-сферы, соединенная с лоренцевской областью, которая расширяется до максимального радиуса, а затем снова сжимается 112
Глава 6. Твисторный взгляд на пространство-время. Р. Пенроуз 114
Классичность кошек. 114
Гипотеза вейлевской кривизны (ГВК). 114
Твисторы и твисторные пространства 115
Рис. 6.1. Сфера Римана, представляющая все комплексные числа вместе с бесконечно удаленной точкой ∞ 115
Рис. 6.2. Пространством направлений спина для частицы со спином 1/2 является сфера Римана отношения амплитуд z/w, где го — амплитуда того, что спин находится в состоянии «вверх», а z —спин «вниз» 116
Рис. 6.3. Небесная сфера наблюдателя в общей теории относительности является естественной сферой Римана 118
Рис. 6.4. На основе твисторного соответствия, световые лучи в пространстве-времени (Минковского) представляются точками в (проективном) твисторном пространстве. 118
(6.1) 119
Квантованные твисторы 121
Рис. 6.5. Конструкция нелинейного гравитона 123
Твисторная космология 125