
- •Природа пространства и времени
- •Электронное оглавление
- •Глава 1. Классическая теория. Стивен Хокинг 10
- •Глава 2. Структура пространственно-временных сингулярностей. Р. Пенроуз 35
- •Глава 3. Квантовые черные дыры. Стивен Хокинг 44
- •Глава 4. Квантовая теория и пространство-время. Р. Пенроуз 74
- •Глава 5. Квантовая космология. Стивен Хокинг 84
- •Глава 6. Твисторный взгляд на пространство-время. Р. Пенроуз 114
- •Глава 7. Обсуждение. С. Хокинг и р. Пенроуз 127
- •Содержание
- •Предисловие
- •Благодарности
- •Глава 1. Классическая теория. Стивен Хокинг
- •10 · Глава 1 — Стивен Хокинг
- •12 · Глава 1 — Стивен Хокинг
- •14 · Глава 1 — Стивен Хокинг
- •16 · Глава 1 — Стивен Хокинг
- •18 · Глава 1 — Стивен Хокинг
- •20 • Глава 1 — Стивен Хокинг
- •22 • Глава 1 — Стивен Хокинг
- •Определение сингулярностей
- •24 · Глава 1 — Стивен Хокинг
- •Теоремы о сингулярностях:
- •26 · Глава 1 — Стивен Хокинг
- •28 · Глава 1 — Стивен Хокинг
- •Космическая цензура.
- •30 · Глава 1 — Стивен Хокинг
- •Слабая космическая цензура.
- •32 · Глава 1 — Стивен Хокинг
- •Нулевой закон механики черных дыр
- •Нулевой закон термодинамики
- •34 · Глава 1 — Стивен Хокинг
- •Обобщенный второй закон
- •Глава 2. Структура пространственно-временных сингулярностей. Р. Пенроуз
- •38 · Глава 2 — Роджер Пенроуз
- •40 · Глава 2 — Роджер Пенроуз
- •42 · Глава 2 — Роджер Пенроуз
- •44 · Глава 2 — Роджер Пенроуз
- •Гипотеза вейлевской кривизны
- •46 · Глава 2 — Роджер Пенроуз
- •Вопросы и ответы
- •Глава 3. Квантовые черные дыры. Стивен Хокинг
- •50 · Глава 3 — Стивен Хокинг
- •Теорема об отсутствии волос.
- •52 · Глава 3 — Стивен Хокинг
- •54 · Глава 3 — Стивен Хокинг
- •56 · Глава 3 — Стивен Хокинг
- •Тепловое излучение черной дыры
- •Метрика Шварцшильда
- •58 · Глава 3 — Стивен Хокинг
- •60 · Глава 3 — Стивен Хокинг
- •62 · Глава 3 — Стивен Хокинг
- •64 · Глава 3 — Стивен Хокинг
- •66 · Глава 3 — Стивен Хокинг
- •68 · Глава 3 — Стивен Хокинг
- •70 · Глава 3 — Стивен Хокинг
- •72 · Глава 3 — Стивен Хокинг
- •74 · Глава 3 — Стивен Хокинг
- •Глава 4. Квантовая теория и пространство-время. Р. Пенроуз
- •76 · Глава 4 — Роджер Пенроуз
- •78 · Глава 4 — Роджер Пенроуз
- •80 · Глава 4 — Роджер Пенроуз
- •82 · Глава 4 — Роджер Пенроуз
- •84 · Глава 4 — Роджер Пенроуз
- •86 · Глава 4 — Роджер Пенроуз
- •Вопросы и ответы
- •88 · Глава 4 — Роджер Пенроуз
- •Глава 5. Квантовая космология. Стивен Хокинг
- •90 · Глава 5 — Стивен Хокинг
- •Два естественных выбора для интеграла по путям в квантовой гравитации
- •92 · Глава 5 — Стивен Хокинг
- •Предположение об отсутствии границ (Хартль и Хокинг).
- •94 · Глава 5 — Стивен Хокинг
- •96 · Глава 5 — Стивен Хокинг
- •98 · Глава 5 — Стивен Хокинг
- •100 · Глава 5 — Стивен Хокинг Рамка 5.Б. Евклидова метрика
- •102 · Глава 5 — Стивен Хокинг
- •Рамка 5.В. Статическая форма метрики де Ситтера
- •104 · Глава 5 — Стивен Хокинг
- •106 · Глава 5 — Стивен Хокинг
- •108 · Глава 5 — Стивен Хокинг
- •Уравнения Шредингера
- •Основное состояние
- •110 · Глава 5 — Стивен Хокинг
- •112 · Глава 5 — Стивен Хокинг
- •114 · Глава 5 — Стивен Хокинг
- •116 · Глава 5 — Стивен Хокинг
- •118 · Глава 5 — Стивен Хокинг
- •Глава 6. Твисторный взгляд на пространство-время. Р. Пенроуз
- •Классичность кошек.
- •Гипотеза вейлевской кривизны (гвк).
- •122 · Глава 6 — Роджер Пенроуз
- •Твисторы и твисторные пространства
- •124 · Глава 6 — Роджер Пенроуз
- •126 · Глава 6 — Роджер Пенроуз
- •128 · Глава 6 — Роджер Пенроуз
- •Квантованные твисторы
- •130 · Глава 6 — Роджер Пенроуз
- •132 · Глава 6 — Роджер Пенроуз
- •134 · Глава 6 — Роджер Пенроуз
- •Твисторная космология
- •136 · Глава 6 — Роджер Пенроуз
- •Глава 7. Обсуждение. С. Хокинг и р. Пенроуз Стивен Хокинг
- •140 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •142 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •144 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •146 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Ответ Роджера Пенроуза
- •Коты и прочее
- •Виковский поворот
- •148 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Потеря фазового пространства
- •Стивен Хокинг
- •150 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •152 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Ответ Роджера Пенроуза
- •154 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Вопросы и ответы
- •156 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Литература
- •158 · Литература
- •160 · Литература
78 · Глава 4 — Роджер Пенроуз
отмечено в моей предыдущей лекции (глава 2). Возможно, что в момент испарения черной дыры небольшая часть информации ускользает из оставшейся части сингулярности (которая, находясь в прошлом для будущего внешнего наблюдателя, будет иметь малую или нулевую вейлевскую кривизну), но эта крохотная добавка информации будет значительно меньше, чем информация, потерянная при коллапсе (под которым я понимаю любую разумную картину конечного исчезновения черной дыры). Если мысленно заключить эту систему в большой ящик, можно рассмотреть эволюцию фазового пространства материи внутри этого ящика. В области фазового пространства, соответствующего ситуациям, когда черная дыра присутствует, фазовые траектории, по которым эволюционирует система, будут сближаться, и отвечающие им объемы фазового пространства будут сокращаться. Это происходит благодаря потере информации в сингулярной черной дыре. Такое сокращение находится в прямом противоречии с известной теоремой классической механики, называемой теоремой Лиувилля, которая утверждает, что объем в фазовом пространстве остается неизменным. (Это классическая теорема. Строго говоря, мы должны были бы рассмотреть квантовую эволюцию в гильбертовом пространстве. Тогда нарушение теоремы Лиувилля будет соответствовать неунитарности эволюции.) Таким образом, пространство-время черной дыры нарушает этот закон сохранения. Однако в моем представлении эта потеря объема фазового пространства компенсируется процессом «спонтанного» квантового измерения, при котором информация добывается и объем фазового пространства увеличивается. Именно поэтому я воспринимаю неопределенность, возникающую благодаря потере информации в черной дыре, как «дополнительную» к неопределенности в квантовой теории; та и другая есть две стороны одной монеты (см. рис. 4.4).
Можно сказать, что сингулярности в прошлом содержат мало информации, а в будущем — много. Именно это лежит в основе второго начала термодинамики. Асимметрия этих сингулярностей также связана с асимметрией измерительного процесса. Поэтому обратимся к проблеме измерений в квантовой теории.
Квантовая теория и пространство-время · 79
Рис. 4.4. В присутствии черной дыры происходит уменьшение объема фазового пространства.
Этот процесс может быть сбалансирован увеличением объема фазового пространства за счет коллапса волновой функции R
Для иллюстрации принципов квантовой теории может быть использована установка с двумя щелями. Рассмотрим луч света, на пути которого поставлен непрозрачный барьер с двумя щелями А и В. После прохождения щелей на экране позади барьера возникает интерференционная картина из чередующихся ярких и темных полос. Отдельные фотоны попадают на экран в отдельных точках, но наличие интерференционных полос на экране показывает, что существуют точки, в которые фотоны не попадают. Пусть p — одна из таких точек. Тем не менее фотон может попасть в р, если закрыть какую-либо из щелей. Такая деструктивная интерференция, при которой альтернативные возможности могут иногда сокращаться, является одним из самых загадочных свойств квантовой механики. Мы объясняем это явление с помощью принципа суперпозиции, присущего квантовой теории. Пусть фотон может распространяться по путям А и В (соответствующие фотонные состояния обозначим |А> и |В>). Предположим, что это те же пути, по которым фотон достигает точки р, проходя либо через одну щель, либо через другую. Тогда принцип суперпозиции утверждает, что возможен и путь, описываемый комбинацией z|A> +w|B>, где z и w — комплексные числа.