
- •Природа пространства и времени
- •Электронное оглавление
- •Глава 1. Классическая теория. Стивен Хокинг 10
- •Глава 2. Структура пространственно-временных сингулярностей. Р. Пенроуз 35
- •Глава 3. Квантовые черные дыры. Стивен Хокинг 44
- •Глава 4. Квантовая теория и пространство-время. Р. Пенроуз 74
- •Глава 5. Квантовая космология. Стивен Хокинг 84
- •Глава 6. Твисторный взгляд на пространство-время. Р. Пенроуз 114
- •Глава 7. Обсуждение. С. Хокинг и р. Пенроуз 127
- •Содержание
- •Предисловие
- •Благодарности
- •Глава 1. Классическая теория. Стивен Хокинг
- •10 · Глава 1 — Стивен Хокинг
- •12 · Глава 1 — Стивен Хокинг
- •14 · Глава 1 — Стивен Хокинг
- •16 · Глава 1 — Стивен Хокинг
- •18 · Глава 1 — Стивен Хокинг
- •20 • Глава 1 — Стивен Хокинг
- •22 • Глава 1 — Стивен Хокинг
- •Определение сингулярностей
- •24 · Глава 1 — Стивен Хокинг
- •Теоремы о сингулярностях:
- •26 · Глава 1 — Стивен Хокинг
- •28 · Глава 1 — Стивен Хокинг
- •Космическая цензура.
- •30 · Глава 1 — Стивен Хокинг
- •Слабая космическая цензура.
- •32 · Глава 1 — Стивен Хокинг
- •Нулевой закон механики черных дыр
- •Нулевой закон термодинамики
- •34 · Глава 1 — Стивен Хокинг
- •Обобщенный второй закон
- •Глава 2. Структура пространственно-временных сингулярностей. Р. Пенроуз
- •38 · Глава 2 — Роджер Пенроуз
- •40 · Глава 2 — Роджер Пенроуз
- •42 · Глава 2 — Роджер Пенроуз
- •44 · Глава 2 — Роджер Пенроуз
- •Гипотеза вейлевской кривизны
- •46 · Глава 2 — Роджер Пенроуз
- •Вопросы и ответы
- •Глава 3. Квантовые черные дыры. Стивен Хокинг
- •50 · Глава 3 — Стивен Хокинг
- •Теорема об отсутствии волос.
- •52 · Глава 3 — Стивен Хокинг
- •54 · Глава 3 — Стивен Хокинг
- •56 · Глава 3 — Стивен Хокинг
- •Тепловое излучение черной дыры
- •Метрика Шварцшильда
- •58 · Глава 3 — Стивен Хокинг
- •60 · Глава 3 — Стивен Хокинг
- •62 · Глава 3 — Стивен Хокинг
- •64 · Глава 3 — Стивен Хокинг
- •66 · Глава 3 — Стивен Хокинг
- •68 · Глава 3 — Стивен Хокинг
- •70 · Глава 3 — Стивен Хокинг
- •72 · Глава 3 — Стивен Хокинг
- •74 · Глава 3 — Стивен Хокинг
- •Глава 4. Квантовая теория и пространство-время. Р. Пенроуз
- •76 · Глава 4 — Роджер Пенроуз
- •78 · Глава 4 — Роджер Пенроуз
- •80 · Глава 4 — Роджер Пенроуз
- •82 · Глава 4 — Роджер Пенроуз
- •84 · Глава 4 — Роджер Пенроуз
- •86 · Глава 4 — Роджер Пенроуз
- •Вопросы и ответы
- •88 · Глава 4 — Роджер Пенроуз
- •Глава 5. Квантовая космология. Стивен Хокинг
- •90 · Глава 5 — Стивен Хокинг
- •Два естественных выбора для интеграла по путям в квантовой гравитации
- •92 · Глава 5 — Стивен Хокинг
- •Предположение об отсутствии границ (Хартль и Хокинг).
- •94 · Глава 5 — Стивен Хокинг
- •96 · Глава 5 — Стивен Хокинг
- •98 · Глава 5 — Стивен Хокинг
- •100 · Глава 5 — Стивен Хокинг Рамка 5.Б. Евклидова метрика
- •102 · Глава 5 — Стивен Хокинг
- •Рамка 5.В. Статическая форма метрики де Ситтера
- •104 · Глава 5 — Стивен Хокинг
- •106 · Глава 5 — Стивен Хокинг
- •108 · Глава 5 — Стивен Хокинг
- •Уравнения Шредингера
- •Основное состояние
- •110 · Глава 5 — Стивен Хокинг
- •112 · Глава 5 — Стивен Хокинг
- •114 · Глава 5 — Стивен Хокинг
- •116 · Глава 5 — Стивен Хокинг
- •118 · Глава 5 — Стивен Хокинг
- •Глава 6. Твисторный взгляд на пространство-время. Р. Пенроуз
- •Классичность кошек.
- •Гипотеза вейлевской кривизны (гвк).
- •122 · Глава 6 — Роджер Пенроуз
- •Твисторы и твисторные пространства
- •124 · Глава 6 — Роджер Пенроуз
- •126 · Глава 6 — Роджер Пенроуз
- •128 · Глава 6 — Роджер Пенроуз
- •Квантованные твисторы
- •130 · Глава 6 — Роджер Пенроуз
- •132 · Глава 6 — Роджер Пенроуз
- •134 · Глава 6 — Роджер Пенроуз
- •Твисторная космология
- •136 · Глава 6 — Роджер Пенроуз
- •Глава 7. Обсуждение. С. Хокинг и р. Пенроуз Стивен Хокинг
- •140 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •142 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •144 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •146 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Ответ Роджера Пенроуза
- •Коты и прочее
- •Виковский поворот
- •148 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Потеря фазового пространства
- •Стивен Хокинг
- •150 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •152 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Ответ Роджера Пенроуза
- •154 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Вопросы и ответы
- •156 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Литература
- •158 · Литература
- •160 · Литература
52 · Глава 3 — Стивен Хокинг
материи и быстро теряет все мультипольные моменты, за исключением первых двух: монопольного момента — массы и дипольного момента, соответствующего моменту импульса.
Такая потеря информации несущественна в рамках классической теории. Можно сказать, что вся информация о коллапсирующем теле просто остается внутри черной дыры. Поэтому внешнему наблюдателю было бы очень трудно определить, на что похоже коллапсирующее тело. Однако в классической теории это все же хотя бы в принципе возможно. В действительности наблюдатель никогда не теряет коллапсирующее тело из поля зрения. По мере приближения к горизонту событий он наблюдает замедление коллапса и потускнение света. Но при этом наблюдатель все еще может видеть, из чего было сделано тело и как распределена масса. Однако квантовая теория все это меняет. Во-первых, до того, как коллапсирующее тело пересечет горизонт событий, оно испустит лишь ограниченное число фотонов. Их будет недостаточно для того, чтобы перенести всю информацию о коллапсирующем теле. Это означает, что в квантовой теории отсутствует возможность измерения состояния коллапсирующего тела внешним наблюдателем. Можно было бы не считать этот вопрос чересчур важным, поскольку информация все равно остается внутри черной дыры, даже если она не может быть измерена снаружи. Но именно здесь проявляется второй эффект квантовой теории по отношению к черным дырам. Как я покажу, квантовая теория является причиной того, что черные дыры излучают и теряют массу. Представляется, что они в конце концов полностью исчезают, унося с собой всю информацию, которая была внутри. Я приведу аргументы, которые показывают, что информация действительно теряется и не может быть возвращена в какой-либо форме. Как я покажу, эта потеря информации приводит к новому уровню неопределенности в физике, стоящей над обычной неопределенностью, связанной с квантовой теорией. К сожалению, в противоположность принципу неопределенности Гейзенберга, этот дополнительный уровень неопределенности в случае черных дыр, видимо, будет значительно сложнее подтвердить экспериментально. Но я покажу в третьей лекции (глава 5), что мы в определенном смысле уже
Квантовые черные дыры · 53
наблюдали эту неопределенность при измерениях флуктуаций микроволнового реликтового излучения.
Тот факт, что квантовая теория является причиной излучения черных дыр, был впервые открыт при изучении квантовой теории поля на фоне коллапсирующей черной дыры. Чтобы увидеть, как это получается, полезно использовать картинки, обычно называемые диаграммами Пенроуза. Однако я думаю, что сам Пенроуз согласится с тем, что на самом деле они должны называться диаграммами Картера, поскольку именно Картер начал их систематически использовать. При сферическом коллапсе пространство-время не зависит от углов θ и φ. Вся геометрия описывается в r-t плоскости. Поскольку любая двумерная поверхность является конформной плоскому пространству, можно представить причинную структуру с помощью диаграммы, на которой нулевые линии в r-t плоскости наклонена под углами ±45° к вертикали.
Рис. 3.2. Диаграмма Картера —Пенроуза для пространства Минковского
Начнем с плоского пространства Минковского, для которого диаграмма Картера-Пенроуза имеет вид треугольника, поставленного на один угол (рис. 3.2). Две боковые стороны спра-