Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Хокинг - природа пространства - времени.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
821.25 Кб
Скачать

50 · Глава 3 — Стивен Хокинг

остановлено за счет давления вырожденного газа электронов или нейтронов. Тогда образуется белый карлик или нейтронная звезда, соответственно. Однако, если масса больше указанного предела, то не существует ничего, что могло бы остановить неудержимое сжатие. После того, как тело сожмется до определенного критического размера, гравитационное поле на его поверхности становится настолько сильным, что световые конусы оказываются наклоненными внутрь этой поверхности, как на рис. 3.1. Я предпочел бы нарисовать четырехмерную картину, однако в результате урезания бюджета Кембриджский университет может позволить себе только двумерные экраны. Поэтому в вертикальном направлении я буду показывать время, а два из трех пространственных направлений буду изображать с помощью перспективы. Вы можете видеть, что даже выходящие световые лучи наклонены друг к другу и поэтому они не расходятся, а сближаются. Это означает, что существует замкнутая ловушечная поверхность, наличие которой является одной из возможных формулировок третьего условия теоремы Хокинга-Пенроуза.

Если верна гипотеза космической цензуры, то она предсказывает, что ловушечная поверхность и сингулярность не могут быть видны с большого расстояния. Тогда должна существовать такая область пространства-времени, из которой невозможно уйти на бесконечность. Эту область называют черной дырой. Ее граница называется горизонтом событий. Она является нулевой поверхностью, образованной теми световыми лучами, которые как раз не смогли уйти на бесконечность. Как мы видели в последней лекции, площадь поперечного сечения горизонта событий не может уменьшаться, по крайней мере в классической теории. Это, а также расчеты сферического коллапса по теории возмущений наводят на мысль, что черные дыры находятся в стационарном состоянии. Теорема «об отсутствии волос» у черной дыры, доказанная в совместной работе Израэли, Картера, Робинсона и моей, показывает, что только стационарные черные дыры в отсутствии материальных полей могут соответствовать решениям Керра. Они характеризуются двумя параметрами, массой Μ и моментом импульса J. Теорема об отсутствии волос была рас-

Квантовые черные дыры · 51

пространена Робинсоном на случай наличия электромагнитного поля. Это добавляет третий параметр Q, электрический заряд. Теорема об отсутствии волос не доказана для случая полей Янга-Миллса, но, похоже, единственной разницей будет добавление одного или нескольких целых чисел, нумерующих дискретное семейство нестабильных решений. Можно показать, что в случае независящих от времени черных дыр, описываемых уравнениями Эйнштейна-Янга-Миллса, не существует других непрерывных степеней свободы.

Теорема об отсутствии волос.

Теорема об отсутствии волос. Стационарные черные дыры характеризуются массой М, моментом импульса J и электрическим зарядом Q

Теорема об отсутствии волос показывает, что при коллапсе тела с образованием черной дыры теряется огромное количество информации. Коллапсирующее тело описывается очень большим числом параметров. Существуют различные типы материи и мультипольные моменты распределения масс. Однако образующая черная дыра полностью не зависит от типа