
- •Природа пространства и времени
- •Электронное оглавление
- •Глава 1. Классическая теория. Стивен Хокинг 10
- •Глава 2. Структура пространственно-временных сингулярностей. Р. Пенроуз 35
- •Глава 3. Квантовые черные дыры. Стивен Хокинг 44
- •Глава 4. Квантовая теория и пространство-время. Р. Пенроуз 74
- •Глава 5. Квантовая космология. Стивен Хокинг 84
- •Глава 6. Твисторный взгляд на пространство-время. Р. Пенроуз 114
- •Глава 7. Обсуждение. С. Хокинг и р. Пенроуз 127
- •Содержание
- •Предисловие
- •Благодарности
- •Глава 1. Классическая теория. Стивен Хокинг
- •10 · Глава 1 — Стивен Хокинг
- •12 · Глава 1 — Стивен Хокинг
- •14 · Глава 1 — Стивен Хокинг
- •16 · Глава 1 — Стивен Хокинг
- •18 · Глава 1 — Стивен Хокинг
- •20 • Глава 1 — Стивен Хокинг
- •22 • Глава 1 — Стивен Хокинг
- •Определение сингулярностей
- •24 · Глава 1 — Стивен Хокинг
- •Теоремы о сингулярностях:
- •26 · Глава 1 — Стивен Хокинг
- •28 · Глава 1 — Стивен Хокинг
- •Космическая цензура.
- •30 · Глава 1 — Стивен Хокинг
- •Слабая космическая цензура.
- •32 · Глава 1 — Стивен Хокинг
- •Нулевой закон механики черных дыр
- •Нулевой закон термодинамики
- •34 · Глава 1 — Стивен Хокинг
- •Обобщенный второй закон
- •Глава 2. Структура пространственно-временных сингулярностей. Р. Пенроуз
- •38 · Глава 2 — Роджер Пенроуз
- •40 · Глава 2 — Роджер Пенроуз
- •42 · Глава 2 — Роджер Пенроуз
- •44 · Глава 2 — Роджер Пенроуз
- •Гипотеза вейлевской кривизны
- •46 · Глава 2 — Роджер Пенроуз
- •Вопросы и ответы
- •Глава 3. Квантовые черные дыры. Стивен Хокинг
- •50 · Глава 3 — Стивен Хокинг
- •Теорема об отсутствии волос.
- •52 · Глава 3 — Стивен Хокинг
- •54 · Глава 3 — Стивен Хокинг
- •56 · Глава 3 — Стивен Хокинг
- •Тепловое излучение черной дыры
- •Метрика Шварцшильда
- •58 · Глава 3 — Стивен Хокинг
- •60 · Глава 3 — Стивен Хокинг
- •62 · Глава 3 — Стивен Хокинг
- •64 · Глава 3 — Стивен Хокинг
- •66 · Глава 3 — Стивен Хокинг
- •68 · Глава 3 — Стивен Хокинг
- •70 · Глава 3 — Стивен Хокинг
- •72 · Глава 3 — Стивен Хокинг
- •74 · Глава 3 — Стивен Хокинг
- •Глава 4. Квантовая теория и пространство-время. Р. Пенроуз
- •76 · Глава 4 — Роджер Пенроуз
- •78 · Глава 4 — Роджер Пенроуз
- •80 · Глава 4 — Роджер Пенроуз
- •82 · Глава 4 — Роджер Пенроуз
- •84 · Глава 4 — Роджер Пенроуз
- •86 · Глава 4 — Роджер Пенроуз
- •Вопросы и ответы
- •88 · Глава 4 — Роджер Пенроуз
- •Глава 5. Квантовая космология. Стивен Хокинг
- •90 · Глава 5 — Стивен Хокинг
- •Два естественных выбора для интеграла по путям в квантовой гравитации
- •92 · Глава 5 — Стивен Хокинг
- •Предположение об отсутствии границ (Хартль и Хокинг).
- •94 · Глава 5 — Стивен Хокинг
- •96 · Глава 5 — Стивен Хокинг
- •98 · Глава 5 — Стивен Хокинг
- •100 · Глава 5 — Стивен Хокинг Рамка 5.Б. Евклидова метрика
- •102 · Глава 5 — Стивен Хокинг
- •Рамка 5.В. Статическая форма метрики де Ситтера
- •104 · Глава 5 — Стивен Хокинг
- •106 · Глава 5 — Стивен Хокинг
- •108 · Глава 5 — Стивен Хокинг
- •Уравнения Шредингера
- •Основное состояние
- •110 · Глава 5 — Стивен Хокинг
- •112 · Глава 5 — Стивен Хокинг
- •114 · Глава 5 — Стивен Хокинг
- •116 · Глава 5 — Стивен Хокинг
- •118 · Глава 5 — Стивен Хокинг
- •Глава 6. Твисторный взгляд на пространство-время. Р. Пенроуз
- •Классичность кошек.
- •Гипотеза вейлевской кривизны (гвк).
- •122 · Глава 6 — Роджер Пенроуз
- •Твисторы и твисторные пространства
- •124 · Глава 6 — Роджер Пенроуз
- •126 · Глава 6 — Роджер Пенроуз
- •128 · Глава 6 — Роджер Пенроуз
- •Квантованные твисторы
- •130 · Глава 6 — Роджер Пенроуз
- •132 · Глава 6 — Роджер Пенроуз
- •134 · Глава 6 — Роджер Пенроуз
- •Твисторная космология
- •136 · Глава 6 — Роджер Пенроуз
- •Глава 7. Обсуждение. С. Хокинг и р. Пенроуз Стивен Хокинг
- •140 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •142 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •144 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •146 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Ответ Роджера Пенроуза
- •Коты и прочее
- •Виковский поворот
- •148 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Потеря фазового пространства
- •Стивен Хокинг
- •150 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •152 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Ответ Роджера Пенроуза
- •154 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Вопросы и ответы
- •156 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Литература
- •158 · Литература
- •160 · Литература
38 · Глава 2 — Роджер Пенроуз
Можно попытаться доказать, что существование ловушечной поверхности требует существования сингулярности. (Это была первая теорема о сингулярности, которую я доказал на основе разумных предположений о причинности, не предполагая наличия сферической поверхности; см. Пенроуз 1965). Можно также вывести аналогичный результат, предполагая существование сходящегося светового конуса (Хокинг и Пенроуз 1970; этот конус появляется, когда все световые лучи, испущенные в различных направлениях из точки, начинают сходится друг к другу в какой-то последующий момент времени).
Вскоре Стивен Хокинг (1965) заметил, что в космологических масштабах можно обратить мои первоначальные аргументы, т. е. применить их к обращенной во времени ситуации. Обращение ловушечной поверхности тогда приводит к тому, что должна существовать сингулярность в прошлом (при соответствующих предположениях о причинности). При этом (обращенная во времени) ловушечная поверхность становится очень большой, соответствующей космологическим масштабам.
Рассмотрим, главным образом, ситуацию с черной дырой. Мы знаем, что где-то должна иметься сингулярность, но для того, чтобы получить черную дыру, мы должны показать, что ее окружает горизонт событий. Гипотеза космической цензуры утверждает именно это, т. е. то, что сингулярность нельзя увидеть снаружи. В частности, из этой гипотезы следует, что должна существовать некоторая область, из которой невозможно отправить сигналы на внешнюю бесконечность. Границей этой области является горизонт событий. Мы можем также использовать теорему о границе, изложенную Стивеном в своей лекции и состоящую в том, что горизонт событий является границей прошлого для будущей нулевой бесконечности. Следовательно, мы знаем, что эта граница:
• должна быть нулевой поверхностью, которая является гладкой и генерируется нулевыми геодезическими;
• содержит неограниченную в будущем нулевую геодезическую, исходящую из каждой точки, в которой отсутствует условие гладкости,
Структура пространственно-временных сингулярностей · 39
и что
• площадь пространственных сечений не может уменьшаться со временем.
Кроме того, было показано (Израэль 1967, Картер 1971, Робинсон 1975, Хокинг 1972), что асимптотическим пределом такого пространства-времени в будущем является пространство-время Керра. Это примечательный результат, поскольку метрика Керра является очень интересным точным решением эйнштейновских уравнений в вакууме. Поскольку это утверждение связано с таким вопросом, как энтропия черной дыры, я собираюсь к нему вернуться в следующей лекции (глава 4).
Поэтому мы действительно имеем нечто, качественно подобное решению ОС. Некоторое отличие, а именно то, что мы приходим к решению Керра, а не Шварцшильда, довольно несущественно. Главное, что картины в этих случаях похожи.
Однако более точные рассуждения основаны на гипотезе космической цензуры. Фактически, космическая цензура очень важна, поскольку теория целиком от нее зависит, и без нее мы вместо черной дыры увидели бы жуткие вещи. Поэтому действительно следует спросить себя, является ли эта гипотеза истинной. Долгое время я считал, что она может быть неверной, и предпринимал различные попытки найти контрпримеры (Стивен Хокинг однажды заявил, что тот факт, что я попытался доказать ложность гипотезы космической цензуры и не преуспел в этом, является одним из сильнейших аргументов в пользу этой гипотезы. Однако я думаю, что это очень слабый аргумент!)
Я хочу обсудить принцип космической цензуры в контексте определенных идей, касающиющихся идеальных точек пространства-времени. (Эти понятия появились в работах Зейферта 1971 и Героха, Кронхаймера и Пенроуза 1972.) Основная идея состоит в том, что в пространство-время мы должны включать как действительно «сингулярные» точки, так и точки «на бесконечности», называемые идеальными точками. Введем сначала понятие НП, неразложимого множества прошлого. Здесь под «множеством прошлого» я понимаю множество, которое содержит свое собственное прошлое, а «неразложимое»