
- •Природа пространства и времени
- •Электронное оглавление
- •Глава 1. Классическая теория. Стивен Хокинг 10
- •Глава 2. Структура пространственно-временных сингулярностей. Р. Пенроуз 35
- •Глава 3. Квантовые черные дыры. Стивен Хокинг 44
- •Глава 4. Квантовая теория и пространство-время. Р. Пенроуз 74
- •Глава 5. Квантовая космология. Стивен Хокинг 84
- •Глава 6. Твисторный взгляд на пространство-время. Р. Пенроуз 114
- •Глава 7. Обсуждение. С. Хокинг и р. Пенроуз 127
- •Содержание
- •Предисловие
- •Благодарности
- •Глава 1. Классическая теория. Стивен Хокинг
- •10 · Глава 1 — Стивен Хокинг
- •12 · Глава 1 — Стивен Хокинг
- •14 · Глава 1 — Стивен Хокинг
- •16 · Глава 1 — Стивен Хокинг
- •18 · Глава 1 — Стивен Хокинг
- •20 • Глава 1 — Стивен Хокинг
- •22 • Глава 1 — Стивен Хокинг
- •Определение сингулярностей
- •24 · Глава 1 — Стивен Хокинг
- •Теоремы о сингулярностях:
- •26 · Глава 1 — Стивен Хокинг
- •28 · Глава 1 — Стивен Хокинг
- •Космическая цензура.
- •30 · Глава 1 — Стивен Хокинг
- •Слабая космическая цензура.
- •32 · Глава 1 — Стивен Хокинг
- •Нулевой закон механики черных дыр
- •Нулевой закон термодинамики
- •34 · Глава 1 — Стивен Хокинг
- •Обобщенный второй закон
- •Глава 2. Структура пространственно-временных сингулярностей. Р. Пенроуз
- •38 · Глава 2 — Роджер Пенроуз
- •40 · Глава 2 — Роджер Пенроуз
- •42 · Глава 2 — Роджер Пенроуз
- •44 · Глава 2 — Роджер Пенроуз
- •Гипотеза вейлевской кривизны
- •46 · Глава 2 — Роджер Пенроуз
- •Вопросы и ответы
- •Глава 3. Квантовые черные дыры. Стивен Хокинг
- •50 · Глава 3 — Стивен Хокинг
- •Теорема об отсутствии волос.
- •52 · Глава 3 — Стивен Хокинг
- •54 · Глава 3 — Стивен Хокинг
- •56 · Глава 3 — Стивен Хокинг
- •Тепловое излучение черной дыры
- •Метрика Шварцшильда
- •58 · Глава 3 — Стивен Хокинг
- •60 · Глава 3 — Стивен Хокинг
- •62 · Глава 3 — Стивен Хокинг
- •64 · Глава 3 — Стивен Хокинг
- •66 · Глава 3 — Стивен Хокинг
- •68 · Глава 3 — Стивен Хокинг
- •70 · Глава 3 — Стивен Хокинг
- •72 · Глава 3 — Стивен Хокинг
- •74 · Глава 3 — Стивен Хокинг
- •Глава 4. Квантовая теория и пространство-время. Р. Пенроуз
- •76 · Глава 4 — Роджер Пенроуз
- •78 · Глава 4 — Роджер Пенроуз
- •80 · Глава 4 — Роджер Пенроуз
- •82 · Глава 4 — Роджер Пенроуз
- •84 · Глава 4 — Роджер Пенроуз
- •86 · Глава 4 — Роджер Пенроуз
- •Вопросы и ответы
- •88 · Глава 4 — Роджер Пенроуз
- •Глава 5. Квантовая космология. Стивен Хокинг
- •90 · Глава 5 — Стивен Хокинг
- •Два естественных выбора для интеграла по путям в квантовой гравитации
- •92 · Глава 5 — Стивен Хокинг
- •Предположение об отсутствии границ (Хартль и Хокинг).
- •94 · Глава 5 — Стивен Хокинг
- •96 · Глава 5 — Стивен Хокинг
- •98 · Глава 5 — Стивен Хокинг
- •100 · Глава 5 — Стивен Хокинг Рамка 5.Б. Евклидова метрика
- •102 · Глава 5 — Стивен Хокинг
- •Рамка 5.В. Статическая форма метрики де Ситтера
- •104 · Глава 5 — Стивен Хокинг
- •106 · Глава 5 — Стивен Хокинг
- •108 · Глава 5 — Стивен Хокинг
- •Уравнения Шредингера
- •Основное состояние
- •110 · Глава 5 — Стивен Хокинг
- •112 · Глава 5 — Стивен Хокинг
- •114 · Глава 5 — Стивен Хокинг
- •116 · Глава 5 — Стивен Хокинг
- •118 · Глава 5 — Стивен Хокинг
- •Глава 6. Твисторный взгляд на пространство-время. Р. Пенроуз
- •Классичность кошек.
- •Гипотеза вейлевской кривизны (гвк).
- •122 · Глава 6 — Роджер Пенроуз
- •Твисторы и твисторные пространства
- •124 · Глава 6 — Роджер Пенроуз
- •126 · Глава 6 — Роджер Пенроуз
- •128 · Глава 6 — Роджер Пенроуз
- •Квантованные твисторы
- •130 · Глава 6 — Роджер Пенроуз
- •132 · Глава 6 — Роджер Пенроуз
- •134 · Глава 6 — Роджер Пенроуз
- •Твисторная космология
- •136 · Глава 6 — Роджер Пенроуз
- •Глава 7. Обсуждение. С. Хокинг и р. Пенроуз Стивен Хокинг
- •140 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •142 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •144 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •146 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Ответ Роджера Пенроуза
- •Коты и прочее
- •Виковский поворот
- •148 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Потеря фазового пространства
- •Стивен Хокинг
- •150 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •152 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Ответ Роджера Пенроуза
- •154 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Вопросы и ответы
- •156 · Глава 7 — Стивен Хокинг и Роджер Пенроуз
- •Литература
- •158 · Литература
- •160 · Литература
Космическая цензура.
Природа питает отвращение к голой сингулярности.
Однако, как я покажу в следующей лекции, в квантовой теории существует некоторая непредсказуемость. Это связано с тем, что гравитационное поле имеет внутреннюю энтропию, что является не только следствием крупнозернистой структу-
30 · Глава 1 — Стивен Хокинг
ры. Гравитационная энтропия, а также тот факт, что время имеет начало и может иметь конец, являются темами моих следующих лекций, потому что это есть как раз то, что существенно отличает гравитацию от других физических полей.
Рис. 1.15. Коллапсирующая звезда, конформно вложенная в многообразие с границей
То, что гравитация имеет характеристику, которая ведет себя подобно энтропии, сначала был отмечен в чисто классической теории. Это зависит от предложенного Пенроузом принципа космической цензуры. Сам принцип не доказан, но считается, что он справедлив при достаточно общих начальных данных и уравнениях состояния. Я буду использовать слабую форму космической цензуры. Сделаем приближение, считая, что область в окрестности коллапсирующей звезды является асимптотически плоской. Тогда, как показал Пенроуз, можно конформно вложить пространственно-временное многооб-
Классическая теория · 31
разие М в многообразие с границей Μ (рис. 1.15). Граница дМ будет нулевой поверхностью и будет состоять из двух компонент, нулевой бесконечности в будущем и в прошлом, называемых и . Я буду говорить, что слабая космическая цензура выполнена, если удовлетворяются два условия. Во-первых, предполагается, что нулевые геодезические генераторы в являются полными в определенной конформной метрике. Это приводит к тому, что наблюдатели, далекие от коллапса, живут до старости и на них не влияет разрыв сингулярности, исходящей от коллапсирующей звезды. Во-вторых, предполагается, что прошлое для является глобально гиперболическим. Это означает, что не существует голой сингулярности, которую можно увидеть с большого расстояния. Пенроуз использовал более сильную форму космической цензуры, которая предполагает, что пространство-время в целом является глобально гиперболическим. Но слабая форма будет вполне достаточной для моих целей.
Слабая космическая цензура.
Если слабая космическая цензура выполняется, то сингулярности, которые, как предсказано, появляются при гравитационном коллапсе, не могут быть видимыми из . Это означает, что должна существовать область пространства-времени, которая не находится в прошлом для . Эту область называют черной дырой, потому что ни свет, ни что-либо еще не может оторваться от нее и уйти на бесконечность. Границу черной дыры называют горизонтом событий. Поскольку она так же является границей прошлого для , горизонт событий может быть получен с помощью отрезков нулевых геодезических, которые могут иметь конечную точку в прошлом, но не могут иметь каких-либо конечных точек в будущем. Из этого следует, что если слабое энергетическое условие выполнено, то генераторы горизонта не могут сближаться, т. к. если бы
32 · Глава 1 — Стивен Хокинг
Рис. 1.16. Когда мы бросаем материю в черную дыру или разрешаем двум черным дырам сливаться, общая площадь горизонта событий никогда не убывает
это происходило, они пересекались бы друг с другом на конечных расстояниях. Отсюда следует, что площадь поперечного сечения горизонта событий не может уменьшаться с течением времени, а в общем случае только увеличивается. Более того, если две черные дыры сталкиваются и сливаются вместе, площадь поверхности конечной черной дыры будет больше, чем сумма площадей поверхностей первоначальных черных дыр (рис. 1.16). Это очень похоже на поведение энтропии в соответствии со вторым законом термодинамики. Энтропия тоже никогда не может уменьшаться, и энтропия полной системы больше, чем сумма энтропий составляющих ее частей.
Второй закон механики черных дыр
Второй закон термодинамики
Классическая теория · 33
Первый закон механики черных дыр
Первый закон термодинамики
Аналогия с термодинамикой становится еще сильнее благодаря первому закону механики черных дыр. Он связывает изменение массы черной дыры с изменением площади горизонта событий и изменениями момента импульса и электрического заряда. Можно сравнить этот закон с первым законом термодинамики, который связывает изменения во внутренней энергии с изменением энтропии и внешней работой, совершенной над системой. Нетрудно видеть, что если площадь горизонта событий аналогична энтропии, то величиной, аналогичной температуре, должно быть то, что называется поверхностной гравитацией κ черной дыры.