
- •Технология открытых горных работ Часть 2. Технология открытых горных работ
- •7.2. Вскрывающие горные выработки, их назначение и параметры
- •7.3. Формы трасс капитальных траншей
- •7.4. Классификация способов вскрытия
- •7.5. Подготовка новых горизонтов
- •7.6. Последовательность вскрытия и производства горно-капитальных работ
- •7.7. Технологические схемы проведения траншей
- •8.2. Классификация систем разработки
- •8.3. Элементы системы разработки и их параметры
- •8.4. Соразмерность развития горных работ в карьере. Показатели интенсивности разработки
- •8.5. Производственная мощность карьера
- •8.6. Принципы формирования технологических схем
- •8.7. Технологическая классификация комплексов оборудования
- •9. Разработка горизонтальных и пологих месторождений
- •9.1. Системы разработки и технологические схемы
- •9.2. Общие принципы вскрытия рабочих горизонтов
- •9.3. Порядок отработки карьерных полей
- •9.4. Перевалка пород одноковшовыми экскаваторами
- •9.5. Технологические схемы с консольными отвалообразователями и транспортно-отвальными мостами
- •9.6. Транспортные технологические схемы
- •9.7. Технологические схемы с использованием автономных выемочно-погрузочных машин непрерывного действия
- •10.2. Системы разработки
- •10.3. Подготовка горизонтов
- •10.4. Формирование схем вскрытия
- •10.5. Технологические особенности производства горных работ при использовании различных видов транспорта.
- •Контрольные вопросы и задания
- •11.2. Особенности горных работ на щебеночных карьерах
- •11.3. Вскрытие и системы разработки на карьерах по добыче природного камня
- •12.2. Способы разработки с применением плавучих земснарядов
- •12.3. Технология разработки россыпных месторождений драгами
- •12.4. Особенности разработки проявлений россыпного золота микро-дражным способом
- •12.5. Особенности добычи полезных ископаемых со дна морей и океанов
- •Контрольные вопросы и задания
- •Заключение
- •Алфавитно-предметный указатель
- •Библиографический список
- •Оглавление
- •Часть 1. Технологические процессы
- •Часть II. Технология открытых горных работ
7.3. Формы трасс капитальных траншей
Продольную ось траншей или системы траншей называют трассой. Горизонтальная проекция трассы является планом транспортных коммуникаций, а вертикальная ее проекция – продольным профилем. Продольный профиль трассы включает наклонные и горизонтальные участки, а также участки сопряжения между ними, обеспечивающие необходимую плавность переходов.
Различают три вида примыкания капитальных траншей к рабочим горизонтам карьера (рис. 7.8): примыкание на руководящем подъеме (схема а), на смягченном подъеме (схема б) и на горизонтальных площадках (схема в).
Примыкание на руководящем подъеме, когда незначительное смягчение подъема допускают лишь в местах пересечения путей, размещения стрелок и на кривых, обеспечивает наименьшую протяженность и минимальный горно-строительный объем системы траншей. Однако для движения поездов на таком продольном профиле необходимо увеличение мощности локомотивов на 10–15 %, так как при трогании с места после остановки на подъеме необходимо преодолевать дополнительное сопротивление движению. Для облегчения трогания и разгона составов, полезная масса которых определена из условия равномерного движения на руководящем подъеме, предусматривают уменьшение подъема капитальной траншеи до (0,60–0,65)·ip при подходе к лежащему выше рабочему горизонту. Длина смягченного участка трассы lсм составляет 200–250 м. Общая длина трассы (м) в этом случае больше на величину
, (7.10)
где n – число смягченных участков; iсм – смягченный подъем, %.
а
б
в
Рис.
7.8. Схемы пунктов примыкания к рабочим
горизонтам:
а
– на руководящем подъеме; б
– на смягченном подъеме;
в
– на горизонтальной площадке
Наиболее распространено примыкание на горизонтальных площадках: оно просто в конструктивном отношении, удобно при эксплуатации и подготовке новых горизонтов. Длина горизонтальной площадки lг (м) зависит от конструкции раздельных пунктов. При этом объем системы траншей остается тем же, что и в случае примыкания на руководящем подъеме, но возрастает длина трассы на величину ΔLп = n·lг, происходит выполаживание борта карьера и увеличивается объем вскрыши в его контурах.
Теоретическую длину трассы можно вычислить по формуле (7.1). Действительная ее длина всегда больше теоретической за счет наличия участков примыкания:
Lд = Lп+ ΔLп (7.11)
В приближенных расчетах Lд находят умножением Lп на коэффициент удлинения трассы Kут (табл. 7.2).
Таблица 7.2. Коэффициент удлинения трассы
Траншеи |
Транспорт |
|
железнодорожный |
автомобильный |
|
Внешние |
1,1–1,2 |
– |
Внутренние с примыканием на смягченном подъеме |
1,2–1,3 |
– |
Внутренние с примыканием на площадках |
1,4–1,6 |
– |
Внутренние с простой формой трассы |
– |
1,07–1,16 |
Внутренние петлевые автомобильные съезды |
– |
1,04–1,25 |
Внутренние петлевые съезды с внешней круговой кривой (серпантином) |
– |
1,4–1,7 |
Форму трассы в плане считают простой, если она не меняет своего направления по всей длине, и сложной, если она состоит из нескольких участков разного направления. Трассы внешних траншей всегда простые (рис. 7.1, а, б), а трассы внутренних траншей могут быть и простыми (рис. 7.1, г), и сложными (рис. 7.9). В последнем случае различают тупиковые (а), петлевые (б), спиральные (в) и комбинированные (г) системы траншей. Установление пространственного положения системы траншей называют трассированием. Основанием для трассирования служат положения бортов карьеров, изображаемых на плане изолиниями одинаковых высотных отметок с интервалом, равным высоте уступа. Обычно трассу вводят в контур карьера с его торца в пониженных местах рельефа местности, что сокращает объем горно-строительных работ. При выборе положения трассы учитывают также необходимость обеспечения устойчивости тех участков бортов, на которых она размещена, расположение станций и отвалов на поверхности и др. [30].
О
а б
в г
Рис.
7.9. Трассы траншей: а
– тупиковая; б
– петлевая; в
– спиральная;
г
– комбинированная