
- •Первый закон термодинамики
- •Термодинамические процессы
- •Второй закон термодинамики
- •Теоретические циклы двигателей внутреннего сгорания
- •Разомкнутые теоретические циклы и их анализ с использованием эвм
- •Расчёт действительного цикла двигателя процесс впуска и газообмена
- •Процесс сжатия
- •Реакции окисления и продукты сгорания
- •Процесс расширения
- •Процесс выпуска
- •Индикаторные показатели двигателя
- •Эффективные показатели двигателя
- •Процесс смесеобразования в двигателях с искровым зажиганием
- •Воспламенение и сгорание в двигателях с искровым зажиганием. Фазы сгорания
- •Нарушение процесса сгорания в двигателях с искровым зажиганием
- •Процесс смесеобразования и сгорания в дизелях
- •Смесеобразование и тепловыделение. Фазы процесса сгорания
- •Процесс расширения
- •Факторы, влияющие на мощностные и экономические показатели двигателей
- •Влияние различных факторов на индикаторные показатели дизеля
- •Влияние различных факторов на индикаторные показатели двигателя с искровым зажиганием
- •Тепловой баланс двигателя
- •Характеристики двигателей
- •Регулировочные характеристики
- •Регулировочная характеристика дизеля по углу опережения впрыскивания
- •Нагрузочные характеристики
- •Скоростные характеристики
- •Многопараметровые характеристики
- •Экологические характеристики двигателей внутреннего сгорания
- •Акустические показатели двигателей
- •Снижение шума двигателей
- •Образование токсичных веществ Нормирующие токсичные вещества
- •Ненормируемые токсичные вещества
- •Образование токсичности отработавших газов двигателей с искровым зажиганием
- •Контроль токсичности отработавших газов при эксплуатации автомобилей
- •Контроль токсичности отработавших газов на стенде с беговыми барабанами
- •Снижение токсичности отработавших газов двигателей с искровым зажиганием
- •Нормирование токсичности и дымности отработавших газов дизелей
- •Снижение токсичности и дымности отработавших газов дизелей
- •Список использованной литературы
- •Содержание
Многопараметровые характеристики
В большинстве рассмотренных выше характеристик двигателей анализировались зависимости различных показателей от одного независимого переменного: в скоростных характеристиках — от n, в нагрузочных — от Ne, ре или Мх и т. д.
В практике часто возникает необходимость изучения изменения параметров и показателей двигателя в зависимости от двух переменных или более. Анализ зависимости выходных показателей от двух независимых переменных можно выполнить с использованием многопараметровых характеристик. Наиболее часто применительно анализу двигателей исследуемый показатель изображается в координатах крутящий момент (или ре) — частота вращения в виде линий постоянных значений исследуемого показателя, что позволяет анализировать его изменение во всем поле активных нагрузочных и скоростных режимов двигателя.
На рис. 42 показана многопараметровая характеристика двигателя в координатах Мх—n, характеризующая его топливную экономичность.
Поле этой характеристики с линиями постоянного значения ge, или ηe сверху ограничено кривой крутящего момента по внешней скоростной характеристике, снизу — осью абсцисс, соответствующей режимам холостого хода, а справа и слева — максимальной и минимальной частотам вращения вала. Для удобства анализа на график часто наносят сетку линий, соответствующих постоянным значениям Ne. Следует отметить, что для построения линий постоянных значений Ne нет необходимости прибегать к экспериментам, так как между Ne и значениями Мх и n существует однозначная связь.
Рис.42.
Анализ такой характеристики помогает быстро оценить зоны наиболее экономичных режимов работы двигателя, сравнить между собой несколько двигателей или результаты модификации данного двигателя, выбрать наиболее выгодный режим работы.
Экологические характеристики двигателей внутреннего сгорания
Современные масштабы выпуска поршневых ДВС и их использование привели к тому, что стало значительным их воздействие на окружающую среду. Условия существования жизни на Земле возможны, как известно, в очень узких пределах изменения физических и химических характеристик окружающей среды. Размеры выбросов от ДВС таковы, что они существенно могут менять концентрации химических веществ, входящих в состав воздуха, воды, почв, которые становятся опасными для жизни биологических существ и прежде всего для человека.
Учение об экологических характеристиках ДВС следует понимать как раздел промышленной экологии, который рассматривает воздействие техники на природу. Это воздействие может быть от единичного двигателя — локальное, или от всей совокупности эксплуатируемых ДВС совместно со всеми элементами инфраструктуры, обеспечивающей их эксплуатацию,— глобальное.
Оценки совокупного воздействия двигателя на окружающую среду возможны. Автомобили и двигатели образуют транспортные потоки, которые перемещаются по улично-дорожной сети. Выделив участок территории, получим транспортный поток плотностью Р авт./км или интенсивностью I авт./ч, для которого можно получить изменение характеристики множества автомобилей, которые перемещаются по выделенной территории. Зная топливно-экономическую характеристику автомобиля (двигателя), можно найти расход топлива автомобильным потоком на выделенной территории. По расходу топлива возможны оценки токсичных выбросов автомобильным потоком, что и определяет его воздействие на окружающую среду. По данной схеме возможны оценки экологического воздействия любого автомобильного потока на автомагистрали или уличной сети.
К экологическим показателям ДВС следует отнести такие, которые характеризуют прямое и косвенное воздействие на окружающую среду. В соответствии со вторым законом термодинамики ДВС всегда будет выбрасывать теплоту в окружающее пространство. Чем выше КПД двигателя, чем лучше его топливная экономичность, тем выше его экологические качества.
Цикличность работы ДВС и процесс сгорания топлива предполагают использование кислорода воздуха и химические превращения веществ в цилиндре ДВС с образованием вредных веществ, а затем их выброс в атмосферу.
Кроме тепловой ДВС выбрасывает в окружающее пространство механическую энергию — акустическое излучение (вибрации и шум).
Таким образом, совокупность показателей, характеризующих тепловое и вещественное взаимодействие работающего ДВС с окружающей средой; акустическое излучение (шум), вибрации; количества конструкционных и эксплуатационных материалов, расходуемых при изготовлении и использовании ДВС; количества энергии, затрачиваемые при производстве и использовании двигателей и материалов, следует понимать как определяющую качество экологической чистоты ДВС.
С
Рис.43.
Прежде всего следует отметить техногенное воздействие на окружающую среду при создании двигателя. Начало его имеет место при разведке и добыче полезных ископаемых, идущих на изготовление конструкционных и эксплуатационных материалов, затем собственно производство двигателей. Технологические процессы изготовления также сопровождаются вредными выбросами, которые концентрируются главным образом в пределах заводских территорий. Оценка экологических качеств технологических процессов изготовления (литье, ковка, механическая обработка, сборка) и их сравнительный анализ — важная самостоятельная задача, здесь же ограничимся самой общей характеристикой, каковой является величина затрат энергии, которые имеют место при производстве единицы материала (чугуна, стали, бензина) или собственно двигателя.
Сведения о величине выбросов некоторых веществ при производстве основных конструкционных и эксплуатационных материалов (металлов, пластмасс, резинотехнических изделий), топлив и масел приведены в табл. 4. Все величины выбросов удельные, т. е. они отнесены к единице массы материала. Данные, содержащиеся в табл. 4, позволяют делать сравнительные оценки совершенства существующих и проектируемых конструкций ДВС, а также дать заключения о том, какова мера воздействия на окружающую среду при производстве материалов для изготовления двигателя и обеспечения его использования.
Таблица 4
Естественно, при этом необходимо знать расходы материалов на изготовление двигателя; для существующих двигателей сведения о фактических расходах материалов известны. При проектировании в первом приближении достаточно знать массу двигателя.
Рис.44
Не будет грубой ошибкой считать, что вся тепловая энергия сжигаемого в ДВС топлива выделяется в окружающую среду, что приводит к ее подогреву.
Одновременно расходуется кислород воздуха, а также выбрасываются ОГ, большую долю в которых по массе составляет диоксид углерода СО2. Диоксид углерода экологически опасен, так как в совокупности с другими химическими веществами он препятствует излучению теплоты земным шаром в окружающее пространство, что приводит к появлению «парникового» эффекта — повышению средней температуры атмосферы.
Снизить выбросы СО2 позволяет переход на использование в качестве топлива природного сжатого газа. Снижение выбросов С02 возможно также при осуществлении непосредственно на двигателе конверсии природного газа с водяным паром и СО2, частично извлекаемым из ОГ, с одновременным использованием их теплоты и энергии, уходящей в охлаждающую среду, так как конверсионные реакции являются эндотермическими. При такой реализации конверсии теплоиспользование в ДВС получается более высоким, так как возникающий в результате конверсии синтезированный газ имеет более высокую удельную теплоту сгорания, чем исходное газовое топливо. Такие же положительные эффекты дает использование по аналогичной схеме спиртового топлива — метанола. Метанол можно получать, например, из биомассы, которая выращивается для этих целей. При выращивании зеленой массы СО2 поглощается из атмосферы, а при снижении метанола в двигателе СО2 выбрасывается в атмосферу. Поэтому в таком цикле не происходит увеличение концентрации СО2 в окружающей среде.
Следующим шагом по уменьшению выбросов СО2 является использование водорода в качестве моторного топлива, при его сжигании в ОГ двигателя СО2 отсутствует.
В ОГ содержится очень большое количество химических веществ (до 300), из которых главное внимание уделяется так называемым токсичным составляющим СО, СН, N0 и саже (твердым частицам). Токсичными называют вещества, оказывающие отравляющее действие на организм человека и окружающую среду.
Очень часто вся проблема экологического совершенства ДВС сводится к поиску способов снижения содержания этих токсичных веществ в ОГ. Безусловно, они вредны и их выбросы нужно снизить, но этим задача экологического совершенствования ДВС не исчерпывается. В ОГ содержатся также канцерогенные вещества ПАУ (полициклические ароматические углеводороды), соединения серы и свинца и множество других составляющих, которые по степени токсичности опаснее, чем СО, СН и N0х.
Помимо ОГ источниками токсичности двигателей являются также картерные газы и испарение топлива в атмосферу. Наибольшее выделение токсичных веществ в атмосферу происходит с ОГ, поэтому основное внимание уделяется уменьшению токсичности ОГ.
Концентрацию токсичных компонентов в сухих ОГ оценивают в % (об.), миллионных долях по объему (млн-1) и реже в мг/л.
Диапазоны изменения количества токсичных компонентов в ОГ приведены табл. 5
Т
аблица
5
Значимость отдельных компонентов (в порядке убывания) для общей токсичности ОГ с учетом действующих норм на предельно допустимые концентрации следующая: соединения свинца (Pb), NOх ПАУ, СО и СН. В соответствии с действующими в Российской Федерации нормами на предельнодопустимые концентрации (ПДК) относительная токсичность ряда составляющих ОГ располагается следующим образом: СО; NOX; СН; РbСН; С20Н12 (бенз-α-пи-рен)= 1:40:1,25:22000:1250000.