
- •Программирование на Java
- •Глава 1 Введение в java. Основы языка.
- •Тема 1.1 Язык программирования java.
- •Тема 1.2 Состав пакета Java2.
- •Тема 1.3 Настройка среды окружения.
- •Тема 1.4 Структура Java-программы.
- •Тема 1.5 Набор текста, запуск и компиляция простейшей программы.
- •Тема 1.6 Подробное рассмотрение кода простейшей программы.
- •Тема 1.7. Создание программы в разных средах разработки.
- •Тема 1.8 Лексические основы языка
- •Тема 1.9 Элементарные типы данных.
- •Тема 1.10 Преобразование типов.
- •Арифметические операции
- •Операции сравнения
- •Тема 1.11 Кoнсольный ввод с помощью класса java.Util.Scanner
- •Тема 1.12 Классы-оболочки
- •Тема 1.13 Автоупакока и автораспаковка.
- •Тема 1.14 Операторы
- •1.14.1 Блок
- •1.14.2 Условный оператор if
- •1.14.4 Оператор цикла while
- •1.14.5 Оператор цикла do-while
- •1.14.6 Оператор цикла for
- •1.14.7 Оператор continue и метки
- •1.14.8 Оператор break
- •1.14.9 Оператор варианта switch
- •Тема 1.15 Статический импорт
- •Тема 1.16 Класс Math
- •Задания
- •Тема 1.17 Псевдослучайные числа
- •Тема 1.18 Генерация случайных чисел
- •Тема 1.19 Массивы в Java
- •1.19.1 Объявление и заполнение массива
- •1.19.2 Сортировка массива
- •Сортировка выбором
- •Сортировка методом пузырька
- •1.19.3 Многомерные массивы
- •Задания
- •1.19.4 Нерегулярные массивы
- •Глава 2 классы
- •Тема 2.1 Основы классов
- •Тема 2.2 Общая форма класса
- •Тема 2.3 Объявление объектов
- •Тема 2.4 Более подробное рассмотрение операции new
- •Тема 2.5 Присваивание переменных объектных ссылок
- •Тема 2.6 Знакомство с методами
- •Тема 2.7 Возвращение значения из метода
- •Тема 2.8 Добавление метода, принимающего параметры
- •Тема 2.9 Конструкторы
- •Тема 2.10 Сборка мусора
- •Тема 2.11 Перегрузка методов
- •Тема 2.12 Перегрузка конструкторов
- •Тема 2.13 Использование объектов в качестве параметров
- •Тема 2.14 Более пристальный взгляд на передачу аргументов
- •Тема 2.16 Рекурсия
- •Тема 2.17 Введение в управление доступом
- •Тема 2.18 Ключевое слово static
- •Тема 2.19 Ключевое слово final
- •Тема 2.20 Аргументы переменной длины
- •Тема 2.21 Строки и числа
- •Тема 2.22 Нумерованные типы
- •Глава 3 наследование и интерфейсы
- •Тема 3.1 Основы наследования
- •Тема 3.2 Наследование и доступ к членам класса
- •Тема 3.3 Конструкторы и наследование
- •Тема 3.4 Использование ключевого слова super для вызова конструктора суперкласса
- •Тема 3.5 Использование ключевого слова super для доступа к членам суперкласса
- •Тема 3.6 Многоуровневая иерархия
- •Тема 3.7 Когда вызываются конструкторы
- •Тема 3.8 Объекты подклассов и ссылки на суперклассы
- •Тема 3.9 Переопределение методов
- •Тема 3.10 Переопределение методов и поддержка полиморфизма
- •Тема 3.11 Использование абстрактных классов
- •Тема 3.12 Использование ключевого слова final
- •Тема 3.13 Предотвращение переопределения методов
- •Тема 3.14 Предотвращение наследования
- •Тема 3.15 Класс Object
- •Тема 3.16 Интерфейсы
- •3.16.1 Объявление интерфейса.
- •3.16.2 Реализация интерфейсов
- •3.16.3 Использование ссылок на интерфейсы
- •3.16.4 Переменные в составе интерфейсов
- •3.16.5 Наследование интерфейсов
- •Тема 3.17 Пакеты и ограничение доступа
- •Тема 3.18 Внутренние классы
- •3.18.1 Внутренние (inner) классы
- •3.18.2 Вложенные (nested) классы
- •3.18.3 Анонимные (anonymous) классы
- •Глава 4 Обработка исключительных ситуаций
- •Тема 4.1 Исключения в Java
- •Тема 4.2 Типы исключений
- •Тема 4.3 Неперехваченные исключения
- •Тема 4.4 Ключевые слова try и catch
- •Тема 4.6 Ключевое слово throw
- •Тема 4.7 Ключевое слово throws
- •Тема 4.8 Ключевое слово finally
- •Ошибка при выполнении метода1 java.Lang.ArithmeticException: Demo
- •Тема 4.9 Потомки Exception или написание своих классов ошибок
- •Глава 5 Универсальные типы. КоллекциИ
- •Тема 5.1 Общие сведения об универсальных типах
- •Тема 5.2 Универсальный класс с двумя параметрами типа
- •Тема 5.3 Ограниченные типы
- •Тема 5.4 Использование групповых параметров
- •Тема 5.5 Универсальные методы
- •Тема 5.6 Универсальные интерфейсы
- •Тема 5.7 Ошибки неоднозначности
- •Тема 5.8 Ограничения универсальных типов
- •Тема 5.9 Краткий обзор коллекций
- •5.9.1 Класс ArrayList
- •5.9.2 Класс LinkedList
- •5.9.3 Класс HashSet
- •5.9.4 Класс TreeSet
- •5.9.5 Доступ к коллекции через итератор
- •5.9.6 Алгоритмы коллекций
- •Глава 6 jdbc (Java DataBase Connectivity) Тема 6.1 Драйверы, соединения и запросы
- •Тема 6.2 Простое соединение и простой запрос
- •Тема 6.2 Класс ResultSet
- •Тема 6.3 Метаданные
- •Тема 6.4 Подготовленные запросы
- •Глава 7 Swing и пользовательский интерфейс
- •Тема 7.1 Общие сведения о swing
- •Тема 7.2 Архитектура mvc
- •Тема 7.3 Контейнер и компоненты
- •Тема 7.4 Простая программа, использующая средства Swing
- •Тема 7.5 Поддержка событий
- •Тема 7.6 Использование кнопок и обработка событий
- •Тема 7.7 Краткие сведения о диспетчерах компоновки
- •Тема 7.8 Пример использования jdbc и swing вместе
Тема 2.11 Перегрузка методов
Java разрешает определение внутри одного класса двух или более методов с одним именем, если только объявления их параметров различны. В этом случае методы называют перегруженными, а процесс – перегрузкой методов. Перегрузка методов – один из способов поддержки полиморфизма в Java. Тем читателям, которые никогда не использовали язык, допускающий перегрузку методов, эта концепция вначале может показаться странной. Но, как вы вскоре убедитесь, перегрузка методов – одна из наиболее впечатляющих и полезных функциональных возможностей Java.
При вызове перегруженного метода для определения нужной версии Java использует тип и/или количество аргументов метода. Следовательно, перегруженные методы должны различаться по типу и/или количеству их параметров. Хотя возвращаемые типы перегруженных методов могут быть различны, самого возвращаемого типа не достаточно для различения двух версий метода. Когда Java встречает вызов перегруженного метода, она просто выполняет ту его версию, параметры которой соответствуют аргументам, использованным в вызове.
Листинг 2.9 иллюстрирует перегрузку метода.
Листинг 2.9
// Демонстрация перегрузки методов.
public class OverloadDemo {
public void test() {
System.out.println("Параметры отсутствуют");
}
// Проверка перегрузки на наличие одного целочисленного параметра.
public void test(int а) {
System.out.println("а: " + а);
}
// Проверка перегрузки на наличие двух целочисленных параметров.
public void test(int a, int b) {
System.out.println("а и b: " + a + " " + b);
}
// Проверка перегрузки на наличие параметра типа double
public double test(double a) {
System.out.println("double a: " + a);
return a * a;
}
}
public class Overload {
public static void main(String args[]) {
OverloadDemo ob = new OverloadDemo();
double result;
// вызов всех версий метода test()
ob.test();
ob.test(10);
ob.test(10, 20);
result = ob.test(123.25);
System.out.println("Результат ob.test(123.25) : " + result);
}
}
Эта программа генерирует следующий вывод:
Параметры отсутствуют а: 10 а и b: 10 20 double а: 123.25 Результат ob.test(123.25): 15190.5625
Как видите, метод test () перегружается четыре раза. Первая версия не принимает никаких параметров, вторая принимает один целочисленный параметр, третья – два целочисленных параметра, а четвертая – один параметр типа double. То, что четвертая версия метода test () возвращает также значение, не имеет никакого значения для перегрузки, поскольку возвращаемый тип никак не влияет на разрешение перегрузки.
При вызове перегруженного метода Java ищет соответствие между аргументами, которые были использованы для вызова метода, и параметрами метода. Однако это соответствие не обязательно должно быть полным. В некоторых случаях к разрешению перегрузки может применяться автоматическое преобразование типов Java. Применение автоматического преобразования типов показано в листинге 2.10 :
Листинг 2.10
// Применение автоматического преобразования типов к перегрузке.
public class OverloadDemo {
public void test() {
System.out.println("Параметры отсутствуют");
}
// Проверка перегрузки на наличие двух целочисленных параметров.
public void test(int a, int b) {
System.out.println("а и b: " + a + " " + b);
}
// Проверка перегрузки на наличие параметра типа double
public double test(double a) {
System.out.println("Внутреннее преобразование test(double) а:" + a);
return a * a;
}
}
public class Overload {
public static void main(String args[]) {
OverloadDemo ob = new OverloadDemo();
int i = 88;
ob.test();
ob.test(10, 20);
ob.test(i);
// этот оператор вызовет test(double)
ob.test(123.2);
// этот оператор вызовет test(double)
}
}
Программа генерирует следующий вывод:
Параметры отсутствуют а и b: 10 20
Внутреннее преобразование test(double) а: 88
Внутреннее преобразование test(double) а: 123.2
Как видите, эта версия класса OverloadDemo не определяет перегрузку test (int). Поэтому при вызове метода test () с целочисленным аргументом внутри класса Overload какой-то соответствующий метод отсутствует. Однако Java может автоматически преобразовывать тип integer в тип double, и это преобразование может использоваться для разрешения вызова. Поэтому после того, как версия test (int) не обнаружена, Java повышает тип i до double, а затем вызывает метод test (double). Конечно, если бы метод test (int) был определен, вызвался бы он. Java будет использовать автоматическое преобразование типов только при отсутствии полного соответствия.
Перегрузка методов поддерживает полиморфизм, поскольку это один из способов реализации в Java концепции "один интерфейс, несколько методов". Для пояснения приведем следующие рассуждения. В тех языках, которые не поддерживают перегрузку методов, каждому методу должно быть присвоено уникальное имя. Однако часто желательно реализовать, по сути, один и тот же метод для различных типов данных. Например, рассмотрим функцию вычисления абсолютного значения. Обычно в языках, которые не поддерживают перегрузку, существует три или более версии этой функции со слегка различающимися именами. Например, в С функция abs () возвращает абсолютное значение значения типа integer, labs () – значения типа long integer, a fabs () – значения с плавающей точкой. Поскольку язык С не поддерживает перегрузку, каждая функция должна обладать собственным именем, несмотря на то, что все три функции выполняют по существу одно и то же действие. В результате в концептуальном смысле ситуация становится более сложной, чем она есть на самом деле. Хотя каждая из функций построена на основе одной и той же концепции, программист вынужден помнить три имени. В Java подобная ситуация не возникает, поскольку все методы вычисления абсолютного значения могут использовать одно и то же имя. И действительно, стандартная библиотека классов Java содержит метод вычисления абсолютного значения, названный abs (). Перегрузки этого метода для обработки всех численных типов определены в Java-классе Math. Java выбирает для вызова нужную версию метода abs () в зависимости от типа аргумента.
Перегрузка ценна тем, что она позволяет обращаться к схожим методам по общему имени. Таким образом, имя abs представляет общее действие, которое должно выполняться. Выбор нужной конкретной версии для данной ситуации – задача компилятора. Программисту нужно помнить только об общем выполняемом действии. Полиморфизм позволяет свести несколько имен к одному. Хотя приведенный пример весьма прост, если эту концепцию расширить, легко убедиться в том, что перегрузка может облегчить выполнение более сложных задач.
При перегрузке метода каждая версия этого метода может выполнять любые необходимые действия. Не существует никакого правила, в соответствии с которым перегруженные методы должны быть связаны между собой. Однако со стилистической точки зрения перегрузка методов предполагает определенную связь. Таким образом, хотя одно и то же имя можно использовать для перегрузки несвязанных методов, поступать так не следует. Например, имя sqr можно было бы использовать для создания методов, которые возвращают квадрат целочисленного значения и квадратный корень значения с плавающей точкой. Но эти две операции принципиально различны. Такое применение перегрузки методов противоречит ее исходному назначению. В частности, следует перегружать только тесно связанные операции.
Задание:
Напишите статический перегруженный метод для расчета площади фигуры. Расчет площади квадрата – передаем 1 параметр double; круга – 1 параметр int; прямоугольника – 2 параметра double