
- •Тема 1. Основы моделирования социально-экономических систем
- •Экономико-математические методы и их классификация
- •Основные понятия моделирования
- •Комплексный анализ работы торговых и промышленных объектов как пример простейшей модели
- •Примеры тестовых заданий по теме 1:
- •Тема 2. Сетевое планирование
- •Примеры тестовых заданий по теме 2
- •Тема 3. Модели управления запасами
- •Модель Уилсона определения оптимального размера заказываемой партии
- •Примеры тестовых заданий по теме 3
- •Тема 4. Модели систем массового обслуживания
- •Примеры тестовых заданий по теме 4
- •Тема 5. Матричные игры
- •5.1 Основные понятия теории игр
- •5.2 Принцип минимакса
- •5.3 Игры с природой
- •Критерии, основанные на известных вероятностях состояний природы
- •1. Критерий Байеса
- •2. Критерий Байеса-Лапласа
- •3. Максиминный критерий Вальда
- •4. Критерий Сэвиджа (минимаксного риска)
- •5. Критерий Гурвица
- •Примеры тестовых заданий по теме 5
- •Тема 6. Задачи математического программирования
- •6.1 Постановка задачи математического программирования
- •6.2 Задача линейного программирования
- •Решение. Введем переменные, т.Е. Обозначим за xj те величины, которые нужно найти в задаче. В данном случае это
- •6.3 Анализ решения задачи линейного программирования на основе теории двойственности
- •6.3.1 Постановка задачи планирования производства продукции
- •6.3.1 Каноническая форма записи злп
- •6.3.3 Двойственность в линейном программировании
- •6.3.4 Первая теорема двойственности
- •6.3.5 Понятие нормированной стоимости
- •6.3.6 Вторая теорема двойственности (теорема о дополняющей нежесткости)
- •6.3.7 Пример анализа отчетов для задачи планирования производства продукции
- •Примеры тестовых заданий по теме 6
- •Тема 7. Модели прогнозирования
- •7.1 Основные понятия прогнозирования
- •7.2 Этапы прогнозирования на основе трендовых моделей
- •Примеры тестовых заданий по теме 7
- •Тема 8. Модели межотраслевого баланса
- •8.1 Принципиальная схема межотраслевого баланса
- •8.2 Применение балансовых моделей в задачах планирования производства продукции
- •8.3 Применение балансовых моделей при ограничениях на внешние ресурсы
- •Величина
- •Примеры тестовых заданий по теме 8
- •Тема 9. Модели анализа инвестиционных проектов
- •9.1. Дисконтирование денежных потоков
- •9.2. Анализ инвестиционных проектов
- •Примеры тестовых заданий по теме 9
Примеры тестовых заданий по теме 5
1. Чему равна верхняя цена игры для следующей платежной матрицы:
-
B1
B2
A1
1
6
A2
-2
7
A3
4
2
Ответ: 4 (При этом нижняя цена игры равна 2)
2. Рассчитайте первый элемент матрицы рисков (r11) для данной платежной матрицы.
-
П1
П2
П3
А1
3
8
1
А2
6
2
4
А3
2
1
9
Ответ: Максимально
возможный выигрыш в первом столбце
равен 6, поэтому
.
3. Какая стратегия рекомендуется на основании критерия Вальда для следующей платежной матрицы:
-
П1
П2
П3
А1
12
6
10
А2
4
8
15
Ответ: первая.
Тема 6. Задачи математического программирования
6.1 Постановка задачи математического программирования
Задачи математического программирования – это задачи определения наилучшего решения из множества допустимых.
В общем виде постановка задачи математического программирования состоит в определении значений переменных х1, х2, …, хn, при которых достигается максимум или минимум функции
(6.1)
при условиях:
(6.2)
Функция (6.1)
называется целевой
функцией,
а условия (6.2) – ограничениями
данной задачи. Запись
в
ограничениях означает, что возможен
один из знаков
,
= или
.
В данной задаче n
обозначает число переменных, а m
- число ограничений.
Переменные задачи х1, х2, …, хn могут иметь различный экономический смысл. Например, если предприятие выпускает три вида продукции, и нужно найти оптимальный план производства, то х1, х2, х3 – количество продукции каждого вида, которое необходимо производить. Если в задаче необходимо найти наилучший состав рациона, в которую могут входить несколько составных компонентов (например, сено и силос в рационе коров), то х1 и х2 – количество каждого продукта, которое нужно включить в рацион (в данном случае, сена и силоса).
Целевая функция в математическом виде выражает критерий оптимальности, т.е. служит для выбора наилучшего решения (см. тему 1). Если используется максимизируемый критерий оптимальности (например, прибыль от производства продукции), то целевая функция стремится к максимуму. Если же в качестве критерия оптимальности выступают затраты (например, на кормление коров), то целевая функция стремится к минимуму.
Система ограничений (6.2) вытекает из ограниченности материальных, трудовых ресурсов, технологических требований или же из здравого смысла. Например, для задачи планирования производства продукции ограничения вытекают из ограниченности на предприятии материальных и трудовых ресурсов, используемых для производства этой продукции. Для задачи составления рациона ограничения заключаются в необходимости того, чтобы рацион был полноценным (содержал питательные вещества, витамины и микроэлементы, необходимые для жизнедеятельности коров).
В зависимости от
характера целевой функции f
и функций ограничений
,
говорят о
различных видах задач математического
программирования:
если целевая функция задачи имеет линейный вид, а ограничения заданы в виде линейных уравнений или неравенств, то это задача линейного программирования. Пример линейного выражения:
5х1+6х2.
если целевая функция и/или ограничения содержат нелинейные функции, то это задача нелинейного программирования. Пример нелинейных функций:
,
х2,
,
sin
x,
1/x
и т.д.
если содержательный смысл требует получения решения в целых числах, то такая задача является задачей целочисленного программирования. Пример: выпуск штучной продукции, назначение работников на работы (нельзя назначить на работу не целое число работников).
если в задаче математического программирования необходимо учитывать фактор времени, то такая задача является задачей динамического программирования. Обычно решение задач динамического программирования может быть представлено как процесс пошагового принятия решений. На каждом шаге выбирается такое решение, которое не обязательно дает оптимальный результат на этом шаге, но обеспечивает наилучший исход всей операции в целом.