
- •Предисловие
- •Введение
- •Концептуальные основы информационных процессов.
- •О понятии «Информация» [1,2]
- •1.2. Виды и свойства информации [2].
- •1.3. Этапы обращения информации [1].
- •1.4. Информационные системы [1].
- •1.5. Система передачи информации [1].
- •1.6. Уровни проблем передачи информации [1].
- •1.7. О смысле «Теории информации» в системе связи [1].
- •2. Математические основы теории вероятностей [6,4].
- •2.1. Случайное событие и вероятность.
- •2.2 Случайные величины и их вероятностные характеристики.
- •Случайные функции и их вероятностное описание.
- •2.4 Корреляционные характеристики случайных процессов.
- •Дифференциальный; 2) интегральный;
- •3) Плотность вероятностей.
- •Дифференциальный; 2) интегральный; 3) числовой.
- •Свойства энтропии [1,3 и др.].
- •Условная энтропия и ее свойства [1,2 и др.].
- •Свойства условной энтропии
- •Энтропия непрерывного источника информации (дифференциальная энтропия) [1, 2 и др.].
- •Передача информации от дискретного источника [1 и др.].
- •Передача информации от непрерывного источника [1 и др.].
- •Основные свойства количества информации [1 и др.].
- •4. Информационные характеристики источника сообщений и канала связи.
- •4.1. Введение [1 и др.].
- •4.2. Информационные характеристики источника дискретных сообщений.
- •4.2.1 Модели источника дискретных сообщений [1 и др.].
- •4.2.2 Свойства эргодических последовательностей знаков [1 и др.].
- •4.2.3 Избыточность источника [1 и др.].
- •4.2.4 Производительность источника дискретных сообщений [1 и др.].
- •4.3. Информационные характеристики дискретных каналов связи.
- •4.3.1 Модели дискретных каналов [1, 4, 5 и др.].
- •Скорость передачи информации по дискретному каналу [1 и др.].
- •Пропускная способность дискретного канала без помех [1 и др.].
- •Пропускная способность дискретного канала с помехами [1 и др.].
- •Информационные характеристики непрерывных каналов связи [1 и др.].
- •Согласование физических характеристик сигнала и канала [1 и др.].
- •Согласование статистических свойств источника сообщений и канала связи [1 и др.].
- •4.6 Контрольные вопросы к разделам 3 и 4 в форме «Задание – тест» тема: «Количественная оценка информации».
- •1) Бод; 2) бит (двоичная цифра); 3) байт.
- •1) Сумма; 2) произведение; 3) разность.
- •1) Безусловной энтропией; 2) условной энтропией;
- •3) Совместной энтропией.
- •1) Объем алфавита;
- •2) Объем алфавита и вероятности создания источником отдельных знаков; 3) вероятности создания источником отдельных знаков.
- •1) Нестационарным; 2) стационарным; 3) постоянным.
- •1) Нестационарным; 2) стационарным; 3) постоянным.
- •1) С памятью; 2) без памяти; 3) регулярный.
- •1) С памятью; 2) без памяти; 3) регулярный.
- •1) Симметричный; 2) несимметричный; 3) условный.
- •1) Симметричный; 2) несимметричный; 3) условный.
- •1) Максимальная скорость; 2) пропускная скорость; 3) предел скорости.
- •1) Уменьшается; 2) увеличивается; 3) не изменяется.
- •1) Уменьшается; 2) увеличивается; 3) не изменяется.
- •5.2. Классификация кодов [4 и др.].
- •5.3. Представление кодов [4 и др.].
- •5.4. Оптимальное (эффективное) статистическое кодирование [3 и др.].
- •5.4.1 Методы эффективного кодирования некоррелированной последовательности знаков [1 и др.].
- •Методика построения кода Шеннона – Фано [1].
- •Методика построения кода Хаффмена [2 и др.].
- •5.4.2 Свойство префиксности эффективных кодов [1 и др.].
- •5.4.3 Методы эффективного кодирования коррелированной последовательности знаков.
- •5.4.4 Недостатки системы эффективного кодирования.
- •1) Номер разряда;
- •2) Множитель, принимающий целочисленные значения;
- •3) Количество разрядов.
- •Всякий блочный код можно представить таблицей:
- •Всякий блочный код можно представить таблицей:
- •Литература:
- •Содержание
Передача информации от непрерывного источника [1 и др.].
Количество информации, получаемой от непрерывного источника по каналу с помехами, определяется так же, как в случае, рассмотренном выше, но с использованием понятия дифференциальной энтропии.
Для источника, имеющего непрерывное множество состояний, среднее количество информации, содержащееся в каждом принятом значении случайной величины S относительно переданного значения случайной величины Z, можно получить как разность априорной и апостериорной дифференциальных энтропий:
(3.39)
Соотношение (3.39) несложно выразить в виде , подобном (3.38):
(3.40)
Относительность дифференциальных энтропий в этом случае не принимается во внимание, поскольку количество информации не зависит от выбранного стандарта сравнения.
Основные свойства количества информации [1 и др.].
Несмотря на то что частное количество информации может быть величиной отрицательной, количество информации неотрицательно.
Действительно, согласно выражению
(3.41)
Тогда
При отсутствии статистической связи между случайными величинами Z и S
(3.42)
следовательно, в этом случае
(принятые элементы сообщения не несут никакой информации относительно переданных).
Количество информации в S относительно Z равно количеству информации в Z относительно S.
Для доказательства этого утверждения воспользуемся выражением
Аналогично можно записать
Так как H(Z,S)=H(S,Z), то
откуда
(3.43)
При взаимно однозначном соответствии между множествами передаваемых и принимаемых элементов сообщений, что имеет место в отсутствии помехи, апостериорная энтропия равна нулю и количество информации численно совпадает с энтропией источника:
(3.44)
Это максимальное количество информации о состоянии дискретного источника.
Пример 3.5. Определить среднее количество информации, получаемое при передаче элемента сообщения по каналу, описанному матрицей совестных вероятностей передачи и приема элементов сообщения
Безусловные вероятности посылаемых z и принимаемых s элементов сообщения определены при рассмотрении примера 3.3. Там же получены значения для априорной H(Z) и апостериорной H(Z|S) энтропий.
В соответствии с (3.37)
4. Информационные характеристики источника сообщений и канала связи.
4.1. Введение [1 и др.].
Опираясь на формализованное описание сигналов и введенную меру количества информации, рассмотрим информационные характеристики источников сообщений и каналов связи, позволяющие установить пути повышения эффективности систем передачи информации, и, в частности, определить условия, при которых можно достигнуть максимальной скорости передачи сообщений по каналу связи, как в отсутствии, так и при наличии помех.
Источник сообщений и каналы связи в системах передачи отличаются большим разнообразием по своей структуре и физической природе. Используются механические, акустические, оптические, электрические и радиоканалы. Для выяснения общих закономерностей необходимо абстрагироваться от их конкретного физического воплощения и оперировать формализованными понятиями источника сообщения и канала связи.
Источник дискретных сообщений формирует дискретные последовательности из ограниченного числа элементарных сообщений. На выходе источника непрерывных сообщений образуются непрерывные сообщения. Источник сообщений в теории информации полностью определяется статистическими данными о формируемых им сообщениях.
Под каналом связи подразумевается совокупность устройств и физических сред, обеспечивающих передачу сообщений из одного места в другое (или от одного момента времени до другого). Если канал используется для передачи дискретных сообщений, он называется дискретным каналом. Непрерывным будем называть канал, предназначенный для передачи непрерывных сообщений.
Если вредным действием помех в канале можно пренебречь, то для анализа используется модель в виде идеализированного канала, называемого каналом без помех. В идеальном канале каждому сообщению на входе однозначно соответствует определенное сообщение на выходе и наоборот.
Когда требования к достоверности велики и пренебрежение неоднозначностью связи между сообщениями z и s недопустимо, используется более сложная модель – канал с помехами.
Канал считается заданным, если известны статистические данные о сообщениях на его входе и выходе и ограничения, накладываемые на входные сообщения физическими характеристиками канала. Канал прямой передачи (от источника сообщений к их получателю), дополненный обратным каналом, например, для запроса повторной передачи в случае обнаружения ошибки, называют каналом с обратной связью.