
- •Предисловие
- •Введение
- •Концептуальные основы информационных процессов.
- •О понятии «Информация» [1,2]
- •1.2. Виды и свойства информации [2].
- •1.3. Этапы обращения информации [1].
- •1.4. Информационные системы [1].
- •1.5. Система передачи информации [1].
- •1.6. Уровни проблем передачи информации [1].
- •1.7. О смысле «Теории информации» в системе связи [1].
- •2. Математические основы теории вероятностей [6,4].
- •2.1. Случайное событие и вероятность.
- •2.2 Случайные величины и их вероятностные характеристики.
- •Случайные функции и их вероятностное описание.
- •2.4 Корреляционные характеристики случайных процессов.
- •Дифференциальный; 2) интегральный;
- •3) Плотность вероятностей.
- •Дифференциальный; 2) интегральный; 3) числовой.
- •Свойства энтропии [1,3 и др.].
- •Условная энтропия и ее свойства [1,2 и др.].
- •Свойства условной энтропии
- •Энтропия непрерывного источника информации (дифференциальная энтропия) [1, 2 и др.].
- •Передача информации от дискретного источника [1 и др.].
- •Передача информации от непрерывного источника [1 и др.].
- •Основные свойства количества информации [1 и др.].
- •4. Информационные характеристики источника сообщений и канала связи.
- •4.1. Введение [1 и др.].
- •4.2. Информационные характеристики источника дискретных сообщений.
- •4.2.1 Модели источника дискретных сообщений [1 и др.].
- •4.2.2 Свойства эргодических последовательностей знаков [1 и др.].
- •4.2.3 Избыточность источника [1 и др.].
- •4.2.4 Производительность источника дискретных сообщений [1 и др.].
- •4.3. Информационные характеристики дискретных каналов связи.
- •4.3.1 Модели дискретных каналов [1, 4, 5 и др.].
- •Скорость передачи информации по дискретному каналу [1 и др.].
- •Пропускная способность дискретного канала без помех [1 и др.].
- •Пропускная способность дискретного канала с помехами [1 и др.].
- •Информационные характеристики непрерывных каналов связи [1 и др.].
- •Согласование физических характеристик сигнала и канала [1 и др.].
- •Согласование статистических свойств источника сообщений и канала связи [1 и др.].
- •4.6 Контрольные вопросы к разделам 3 и 4 в форме «Задание – тест» тема: «Количественная оценка информации».
- •1) Бод; 2) бит (двоичная цифра); 3) байт.
- •1) Сумма; 2) произведение; 3) разность.
- •1) Безусловной энтропией; 2) условной энтропией;
- •3) Совместной энтропией.
- •1) Объем алфавита;
- •2) Объем алфавита и вероятности создания источником отдельных знаков; 3) вероятности создания источником отдельных знаков.
- •1) Нестационарным; 2) стационарным; 3) постоянным.
- •1) Нестационарным; 2) стационарным; 3) постоянным.
- •1) С памятью; 2) без памяти; 3) регулярный.
- •1) С памятью; 2) без памяти; 3) регулярный.
- •1) Симметричный; 2) несимметричный; 3) условный.
- •1) Симметричный; 2) несимметричный; 3) условный.
- •1) Максимальная скорость; 2) пропускная скорость; 3) предел скорости.
- •1) Уменьшается; 2) увеличивается; 3) не изменяется.
- •1) Уменьшается; 2) увеличивается; 3) не изменяется.
- •5.2. Классификация кодов [4 и др.].
- •5.3. Представление кодов [4 и др.].
- •5.4. Оптимальное (эффективное) статистическое кодирование [3 и др.].
- •5.4.1 Методы эффективного кодирования некоррелированной последовательности знаков [1 и др.].
- •Методика построения кода Шеннона – Фано [1].
- •Методика построения кода Хаффмена [2 и др.].
- •5.4.2 Свойство префиксности эффективных кодов [1 и др.].
- •5.4.3 Методы эффективного кодирования коррелированной последовательности знаков.
- •5.4.4 Недостатки системы эффективного кодирования.
- •1) Номер разряда;
- •2) Множитель, принимающий целочисленные значения;
- •3) Количество разрядов.
- •Всякий блочный код можно представить таблицей:
- •Всякий блочный код можно представить таблицей:
- •Литература:
- •Содержание
Свойства энтропии [1,3 и др.].
Рассмотрим основные свойства энтропии, обратив внимание на то, что сформулированные условия для меры неопределенности выполняются.
Энтропия является вещественной и неотрицательной величиной, так как для любого i(1≤i≤N) pi изменяется в интервале от 0 до 1, log(pi) отрицателен и, следовательно, -pilog(pi) положительна.
Энтропия – величина ограниченная. Для слагаемых –pilog(pi) в диапазоне 0<pi≤1 ограниченность очевидна. Остается определить предел, к которому стремится слагаемое –pilog(pi) при pi→0, поскольку -log(pi) при этом неограниченно возрастает:
Обозначив
и воспользовавшись правилом Лопиталя,
получим
Энтропия обращается в нуль лишь в том случае, если вероятность одного из состояний равна единице; тогда вероятности всех остальных состояний, естественно, равны нулю. Это положение соответствует случаю, когда состояние источника полностью определено.
Энтропия максимальна, когда все состояния источника равновероятны, что легко доказывается методом неопределенных множителей Лагранжа:
(3.7)
Энтропия источника x с двумя состояниями x1 и x2 изменяется от нуля до единицы, достигая максимума при равенстве их вероятностей:
График зависимости H(X) в функции p
(3.8)
приведены на рис. 3.1
Рис. 3.1. Зависимость энтропии H(X) от вероятности p.
При p<<(1-p) частная неопределенность, приходящаяся на состояние x1 велика, однако такие состояния источника весьма редки. Состояния x2 реализуются часто, но неопределенность, приходящаяся на такое состояние, очень мала. Поэтому энтропия, характеризующая среднюю неопределенность на одно состояние ансамбля , так же мала. Аналогичная ситуация наблюдается при p>>(1-p).
Отметим, что энтропия непрерывно зависит от вероятностей отдельных состояний, что непосредственно вытекает из непрерывности функции –plogp.
Энтропия объединения нескольких статистически независимых источников информации равна сумме энтропий исходных источников.
Не теряя общности, ограничимся рассмотрением объединения, включающего два источника информации x и y понимают обобщенный источник информации (x, y), характеризующийся вероятностями p(xi, yj) всех возможных комбинаций состояний xi источника X и yj источника Y. Аналогично трактуется и объединение ансамблей.
В соответствии с определением энтропия объединения
(3.9)
здесь p(xi, yj) – вероятности совместной реализации состояний
и
В случае статистической независимости источников информации x и y запишем
тогда
Учитывая, что
и
получим
(3.10)
Соответственно для энтропии объединения нескольких независимых источников x,y,z имеем
(3.11)
В дальнейшем для придания общности получаемым результатам о неопределенности выбора будем говорить в основном применительно к математическим моделям источников информации в виде ансамблей.
Энтропия характеризует среднюю неопределенность выбора одного состояния из ансамбля. При ее определении используют только вероятности состояний, полностью игнорируя их содержательную сторону.
Энтропия как мера неопределенности согласуется с экспериментальными данными, полученными при изучении психологических реакций человека, в частности реакции выбора. Установлено, что время безошибочной реакции на последовательность беспорядочно чередующихся равновероятных раздражителей (например, загорающихся лампочек) растет с увеличением их числа так же, как энтропия. Это характеризует неопределенность выбора одного раздражителя.
Замена равновероятных раздражителей неравновероятными приводит к снижению среднего времени реакции ровно настолько, насколько уменьшается энтропия.