
- •1.Значение и классификация углеводов.
- •2.Переваривание и всасывание углеводов
- •3.Механизмы трансмембранного переноса глюкозы.
- •5. Гликонегенез. Биологическое значение.
- •8. Строение гликогена.Распад гликогена.
- •9.Окислетильный этап пентозофосфатный пути превращения глюкозы.Значение окислительного этапа гмф-пути.
- •10.Неокислительный этап пентозофосфатного пути превращения глюкозы.Значение неокислительного этапа гмф-пути.
- •11.Регуляция гликолиза и глюконеогенеза в печени.
- •2. Переключение печени с гликолиза на глюконеогенез и наоборот происходит с участием инсулина и глюкагона и осуществляется с помощью:
- •12.Гормрнальная регуляция метаболизма углеводов.Гормоны прямого действия. Инсулин, адреналин, глюкагон. Основные механизмы действия.
- •13.Гормональная регуляция метаболизма углеводов.Гормоны косвенного действия. Самотропный гормон,гормоны щитовидной железы.Основные механизмы действия.
- •14.Обмен фруктозы. Нарушение обмена фруктозы.
- •15.Обмен галактозы.Нарушение обмена галактозы.
- •16.Структура и биологическая роль гликозамингликанов.Строение и биологическое значение Гиалуроновой кислоты и Хондроитин-4-сульфат.
- •17.Структура и биологическая роль гликозамингликанов.Строение и биологическое значение Дерматансульфат и Гепарансульфат.
- •18. Структура и биологическая роль гликозамингликанов.Строение и биологическое значение Гепарина и Кератансульфат.
- •19. Структура и биологическая роль гликозамингликанов. Строение и биологическое значение Гиалуроновая кислота и Гепарансульфат.
- •23.,24.Состав и функции гликопротеидов. Общая характеристика функции гаптоглобина, трансферрина, церулоплазмина, фибриногена, - фетопротеина.
- •27.Метаболические и гормональные нарушения при сахарном диабете.
- •28.,29. Нарушения обмена гликогена
- •33.Пируватдегидрогеназный комплекс
- •Итоговое уравнение
- •37. Хемиосмотическое сопряжение.
- •Общая характеристика этапов хемиосмотического процесса
- •40.Окислительное фосфорилирование
- •41. Разобщение дыхания и фосфорилирования
- •43. Регуляция энергетического обмена
- •44. Гипоэнергетические состояния
18. Структура и биологическая роль гликозамингликанов.Строение и биологическое значение Гепарина и Кератансульфат.
Гликозаминогликаны (ГАГ) – углеводная часть углеводсодержащих биополимеров гликозамино-протеогликанов или протеогликанов. Прежнее название гликозаминопротеогликанов "мукополисахариды" исключено из химической номенклатуры.
Молекулы ГАГ состоят из повторяющихся звеньев, которые построены из остатков уроновых кислот (D-глюкуроновой или L-идуроновой) и сульфатированных и ацетилированных аминосахаров. Кроме указанных основных моносахаридных компонентов, в составе ГАГ в качестве так называемых минорных сахаров встречаются L-фукоза, сиаловые кислоты, D-манноза и D-ксилоза.
Гликозаминогликаны в составе протеогликанов входят в состав межклеточного вещества соединительной ткани, содержатся в костях, синовиальной жидкости, стекловидном теле и роговице глаза. Вместе с волокнами коллагена и эластина ГАГ в составе протеогликанов образуют соединительнотканный матрикс (основное вещество).
Гепарин - важный компонент противосвёртывающей системы крови (его применяют как антикоагулянт при лечении тромбозов). Он синтезируется тучными клетками и находится в гранулах внутри этих клеток. Наибольшие количества гепарина обнаруживаются в лёгких, печени и коже.
Дисахаридная единица гепарина похожа на дисахаридную единицу гепарансульфата. Отличие этих гликозаминогликанов заключается в том, что в гепарине больше N-сульфатных групп, а в гепарансульфате больше N-ацетильных групп.
Кератансульфагы - наиболее гетерогенные гликозаминогликаны; отличаются друг от друга по суммарному содержанию углеводов и распределению в разных тканях. Кератансульфат I находится в роговице глаза и содержит кроме повторяющейся дисахаридной единицы L-фукозу, D-маннозу и сиаловую кислоту. Кератансульфат II был обнаружен в хрящевой ткани, костях, межпозвоночных дисках. В его состав помимо Сахаров дисахаридной единицы входят N-ацетилгалактозамин, L-фукоза, D-манноза и сиаловая кислота. Кератансульфат II входит в состав агрекана и некоторых малых протеогликанов хрящевого матрикса. В отличие от других гликозаминогликанов, кератансульфаты вместо гексуроновой кислоты содержат остаток галактозы.
19. Структура и биологическая роль гликозамингликанов. Строение и биологическое значение Гиалуроновая кислота и Гепарансульфат.
Гликозаминогликаны (ГАГ) – углеводная часть углеводсодержащих биополимеров гликозамино-протеогликанов или протеогликанов. Прежнее название гликозаминопротеогликанов "мукополисахариды" исключено из химической номенклатуры.
Молекулы ГАГ состоят из повторяющихся звеньев, которые построены из остатков уроновых кислот (D-глюкуроновой или L-идуроновой) и сульфатированных и ацетилированных аминосахаров. Кроме указанных основных моносахаридных компонентов, в составе ГАГ в качестве так называемых минорных сахаров встречаются L-фукоза, сиаловые кислоты, D-манноза и D-ксилоза.
Гликозаминогликаны в составе протеогликанов входят в состав межклеточного вещества соединительной ткани, содержатся в костях, синовиальной жидкости, стекловидном теле и роговице глаза. Вместе с волокнами коллагена и эластина ГАГ в составе протеогликанов образуют соединительнотканный матрикс (основное вещество).
Гиалуроновая кислота - мукополисахарид, входящий в состав кожи человека. Молекулы гиалуроновой кислоты обладают разнообразными свойствами, одной из которых - высокая гидрофильность и способность удерживать большое количество влаги. Гиалуроновая кислота находится во многих органах и тканях. В хряще она связана с белком и участвует в образовании протеогликановых агрегатов, в некоторых органах (стекловидное тело глаза, пупочный канатик, суставная жидкость) встречается и в свободном виде. Предполагается, что в суставной жидкости гиалуроновая кислота выполняет роль смазочного вещества, уменьшая трение между суставными поверхностями. Повторяющаяся дисахаридная единица в гиалуроновой кислоте имеет следующую структуру:
Гепарансульфат находится во многих органах и тканях. Он входит в состав протеогликанов базальных мембран. Гепарансульфат является постоянным компонентом клеточной поверхности.
Содержится в плазматических мембранах различных клеток и в межклеточном веществе. По своей структуре содержащие гепарансульфат Г так же, как и другие полимеры этого класса, представляют гетерогенное семейство макромолекул.
20. . Структура и биологическая роль гликозамингликанов. Строение и биологическое значение Гепарина и Хондроитин-4-сульфата. Гликозаминогликаны (ГАГ) – углеводная часть углеводсодержащих биополимеров гликозамино-протеогликанов или протеогликанов. Прежнее название гликозаминопротеогликанов "мукополисахариды" исключено из химической номенклатуры.
Молекулы ГАГ состоят из повторяющихся звеньев, которые построены из остатков уроновых кислот (D-глюкуроновой или L-идуроновой) и сульфатированных и ацетилированных аминосахаров. Кроме указанных основных моносахаридных компонентов, в составе ГАГ в качестве так называемых минорных сахаров встречаются L-фукоза, сиаловые кислоты, D-манноза и D-ксилоза.
Гликозаминогликаны в составе протеогликанов входят в состав межклеточного вещества соединительной ткани, содержатся в костях, синовиальной жидкости, стекловидном теле и роговице глаза. Вместе с волокнами коллагена и эластина ГАГ в составе протеогликанов образуют соединительнотканный матрикс (основное вещество).
Гепарин - важный компонент противосвёртывающей системы крови (его применяют как антикоагулянт при лечении тромбозов). Он синтезируется тучными клетками и находится в гранулах внутри этих клеток. Наибольшие количества гепарина обнаруживаются в лёгких, печени и коже.
Дисахаридная единица гепарина похожа на дисахаридную единицу гепарансульфата. Отличие этих гликозаминогликанов заключается в том, что в гепарине больше N-сульфатных групп, а в гепарансульфате больше N-ацетильных групп.
Хондроитин-4- сульфат хрящевой ткани и стенок артерий соединены со специфическим белковым «кором». Белковый компонент составляет около 17—22% от молекулы хондроитинсульфатпротеина. С гиалуроновыми кислотами хондроитинсульфаты способны образовывать различные по величине агрегаты.
21.Состав и функции гликопротеидов. Общая характеристика функции гаптоглобина, трансферрина, церулоплазмина. Углеводсодержащие белки — гликопротеины — представляют собой комплексы белков, гексоз и их производных. Они вырабатываются и секретируются клетками печени под влиянием катехоламинов.
Наиболее известными представителями собственно гликопротеинов являются различные ферменты (например, церулоплазмин), фибриноген, гаптоглобин, трансферрин, фибронектин, ламинин и т.д. Гаптоглобин – синтезируемый в печени белок. Его характерной особенностью является способность связываться с гемоглобином с образованием комплекса («гемоглобин–гаптоглобин»), не проходящего через почечный барьер. Тем самым в организме задерживается очень ценный для него элемент – железо, а почки предохраняются от формирования гемосидероза. Помимо предохранения организма от потери железа гаптоглобин участвует в процессах детоксикации, защищает от протеолиза, участвует в транспорте витамина B12.. Определение гаптоглобина имеет диагностическое значение при ряде патологических состояний.
Церулоплазмин (ЦП) – медьсодержащий белок (молекулярная масса 132 000 Д). Существует в нескольких генетически обусловленных формах. В его состав входят 80% белка, 16% углеводов и 0,32% меди (по 2 атома на каждую из полипептидных цепей).Синтез плазменного ЦП осуществляется преимущественно собственными клетками печени, а поддержание его уровня в крови контролируется рядом гормонов и медиаторов иммунной системы. Функции ЦП разнообразны: он участвующий в обмене железа и кроветворении, разрушает биогенные амины и другие субстраты, является ферментом антиоксидантной защиты. Определение церулоплазмина имеет диагностическое значение.
Трансферрин — транспортный белок, имеет мол. массу около 88 000 Д. Синтез трансферрина происходит в основном в печени и в небольших количествах в лимфоидной ткани, молочной железе, тестикулах и яичниках. Роль трансферрина сводится к переносу железа от места его всасывания к костному мозгу, а также от клеток ретикулоэндотелиальной системы, где происходит распад гемоглобина, к костному мозгу и печени. Каждая молекула трансферрина может связать 2 атома трехвалентного железа. Металлосвязывающий участок молекулы не является специфичным для железа. Трансферрин может связывать также хром, медь, магний, цинк, кобальт, однако сродство к этим металлам ниже, чем к железу. Многие клетки организма нуждаются в трансферрине для роста. В иммунной системе присутствие трансферрина — обязательное условие для пролиферации Т-лимфоцитов. Трансферрин относится к белкам острой фазы, отражающим иммунологическую реактивность организма.
22. .Состав и функции гликопротеидов. Общая характеристика функции гаптоглобина,фибриногена, -фетопротеиа. Углеводсодержащие белки — гликопротеины — представляют собой комплексы белков, гексоз и их производных. Они вырабатываются и секретируются клетками печени под влиянием катехоламинов.
Наиболее известными представителями собственно гликопротеинов являются различные ферменты (например, церулоплазмин), фибриноген, гаптоглобин, трансферрин, фибронектин, ламинин и т.д. Гаптоглобин – синтезируемый в печени белок. Его характерной особенностью является способность связываться с гемоглобином с образованием комплекса («гемоглобин–гаптоглобин»), не проходящего через почечный барьер. Тем самым в организме задерживается очень ценный для него элемент – железо, а почки предохраняются от формирования гемосидероза. Помимо предохранения организма от потери железа гаптоглобин участвует в процессах детоксикации, защищает от протеолиза, участвует в транспорте витамина B12.. Определение гаптоглобина имеет диагностическое значение при ряде патологических состояний.
Фибриноген, является важным фактором свертывания крови (фактор I). Та модификация белка, в виде которой он вырабатывается паренхиматозными клетками печени и поступает в кровь, именуется фибриногеном А. Под действием тромбина фибриноген превращается в нерастворимый в крови фибриллярный белок – фибрин, составляющий основу тромба (сгустка). Определение фибриногена имеет диагностическое значение.
-фетопротеин (АФП): гликопротеин (молекулярная масса 69 000), вырабатываемый в желточном мешке, печени и желудочно-кишечном тракте. Сходен с альбумином и выполняет его функции на эмбриональной стадии развития. Относится к числу онкофетальных антигенов, образующихся при внутриутробном развитии плода и не обнаруживаемых в постнатальном периоде. Имеет диагностическое значение как маркер пороков развития плода, для диагностики гепатоцеллюлярного рака.
23. .Состав и функции гликопротеидов. Общая характеристика функции церулоплазмина, фибриногена, , -фетопротеиа. . Углеводсодержащие белки — гликопротеины — представляют собой комплексы белков, гексоз и их производных. Они вырабатываются и секретируются клетками печени под влиянием катехоламинов.
Наиболее известными представителями собственно гликопротеинов являются различные ферменты (например, церулоплазмин), фибриноген, гаптоглобин, трансферрин, фибронектин, ламинин и т.д. Церулоплазмин (ЦП) – медьсодержащий белок (молекулярная масса 132 000 Д). Существует в нескольких генетически обусловленных формах. В его состав входят 80% белка, 16% углеводов и 0,32% меди (по 2 атома на каждую из полипептидных цепей).Синтез плазменного ЦП осуществляется преимущественно собственными клетками печени, а поддержание его уровня в крови контролируется рядом гормонов и медиаторов иммунной системы. Функции ЦП разнообразны: он участвующий в обмене железа и кроветворении, разрушает биогенные амины и другие субстраты, является ферментом антиоксидантной защиты. Определение церулоплазмина имеет диагностическое значение. Фибриноген, является важным фактором свертывания крови (фактор I). Та модификация белка, в виде которой он вырабатывается паренхиматозными клетками печени и поступает в кровь, именуется фибриногеном А. Под действием тромбина фибриноген превращается в нерастворимый в крови фибриллярный белок – фибрин, составляющий основу тромба (сгустка). Определение фибриногена имеет диагностическое значение.
-фетопротеин (АФП): гликопротеин (молекулярная масса 69 000), вырабатываемый в желточном мешке, печени и желудочно-кишечном тракте. Сходен с альбумином и выполняет его функции на эмбриональной стадии развития. Относится к числу онкофетальных антигенов, образующихся при внутриутробном развитии плода и не обнаруживаемых в постнатальном периоде. Имеет диагностическое значение как маркер пороков развития плода, для диагностики гепатоцеллюлярного рака.