
- •1.Значение и классификация углеводов.
- •2.Переваривание и всасывание углеводов
- •3.Механизмы трансмембранного переноса глюкозы.
- •5. Гликонегенез. Биологическое значение.
- •8. Строение гликогена.Распад гликогена.
- •9.Окислетильный этап пентозофосфатный пути превращения глюкозы.Значение окислительного этапа гмф-пути.
- •10.Неокислительный этап пентозофосфатного пути превращения глюкозы.Значение неокислительного этапа гмф-пути.
- •11.Регуляция гликолиза и глюконеогенеза в печени.
- •2. Переключение печени с гликолиза на глюконеогенез и наоборот происходит с участием инсулина и глюкагона и осуществляется с помощью:
- •12.Гормрнальная регуляция метаболизма углеводов.Гормоны прямого действия. Инсулин, адреналин, глюкагон. Основные механизмы действия.
- •13.Гормональная регуляция метаболизма углеводов.Гормоны косвенного действия. Самотропный гормон,гормоны щитовидной железы.Основные механизмы действия.
- •14.Обмен фруктозы. Нарушение обмена фруктозы.
- •15.Обмен галактозы.Нарушение обмена галактозы.
- •16.Структура и биологическая роль гликозамингликанов.Строение и биологическое значение Гиалуроновой кислоты и Хондроитин-4-сульфат.
- •17.Структура и биологическая роль гликозамингликанов.Строение и биологическое значение Дерматансульфат и Гепарансульфат.
- •18. Структура и биологическая роль гликозамингликанов.Строение и биологическое значение Гепарина и Кератансульфат.
- •19. Структура и биологическая роль гликозамингликанов. Строение и биологическое значение Гиалуроновая кислота и Гепарансульфат.
- •23.,24.Состав и функции гликопротеидов. Общая характеристика функции гаптоглобина, трансферрина, церулоплазмина, фибриногена, - фетопротеина.
- •27.Метаболические и гормональные нарушения при сахарном диабете.
- •28.,29. Нарушения обмена гликогена
- •33.Пируватдегидрогеназный комплекс
- •Итоговое уравнение
- •37. Хемиосмотическое сопряжение.
- •Общая характеристика этапов хемиосмотического процесса
- •40.Окислительное фосфорилирование
- •41. Разобщение дыхания и фосфорилирования
- •43. Регуляция энергетического обмена
- •44. Гипоэнергетические состояния
27.Метаболические и гормональные нарушения при сахарном диабете.
Исследование углеводного обмена в клинике начинается с анализа мочи на присутствие в ней глюкозы и кетоновых тел; кроме того, проводится определение содержания глюкозы в крови.
Гипергликемия – увеличение содержания глюкозы в крови. Может носить физиологический характер в случае приема богатой углеводами пищи (алиментарная гипогликемия) или в результате одномоментной физической нагрузки: адреналин, глюкокортикостероиды и катехоламины усиливают глюконеогенез и распад гликогена. Физиологические гипергликемии носят кратковременный характер. Патологические типы гипергликемий обусловлены эндокринными расстройствами, в частности нарушением оптимального соотношения между секрецией гормонов гипер- и гипогликемического действия.
Гипогликемия может носить физиологический характер вслед за алиментарной гипергликемией как результат компенсаторного выброса инсулина.
Патологическая гипогликемия может быть результатом:
1) гиперинсулинемии;
2) недостаточностью ферментов расщепляющих дисахариды в кишечнике;
3) заболеваний печени с торможением гликогенобразования и глюконеогенеза;
4) дефицита глюкокортикоидов;
5) гипоксии.
Увеличение содержания глюкозы в крови выше пределов нормы носит название гипергликемия, появление же глюкозы в моче именуется глюкозурией.
Если в результате проведенных исследований выявляется повышение концентрации глюкозы в крови и наличие глюкозы и кетоновых тел в моче, этого достаточно для подтверждения диагноза сахарного диабета. Заболевания других внутренних органов не дают всей триады: гипергликемии, глюкозурии и кетонурии.
Присутствие кетоновых тел в моче свидетельствует о грубых нарушениях не только углеводного, но и липидного обмена, что имеет место главным образом при заболеваниях поджелудочной железы.Таким образом, определение содержания глюкозы в крови, моче и выявление гипер- и гипогликемии, глюкозурии имеют важное клинико-диагностическое значение.
28.,29. Нарушения обмена гликогена
1. Гликогеновые болезни - это группа наследственных болезней, причиной которых является дефект фермента. Следствием этого является снижение или отсутствие активности какого-либо фермента, участвующего в синтезе или распаде гликогена или регуляции этих процессов.
2. Гликогенозы (болезни накопления гликогена) обусловлены дефектом ферментов, участвующих в распаде гликогена. Гликогеноз проявляется избыточным накоплением гликогена в печени, сердечной и скелетных мышцах, почках, легких и других органах. Накапливаемый гликоген может иметь как нормальную, так и измененную структуру. Результатом нарушения распада гликогена являются гипоглюкоземия и ее последствия. Существует несколько типов гликогенозов, различающихся характером и локализацией дефектного фермента.
3.Агликогенозы обусловлены нарушением синтеза гликогена и сопровождаются снижением его содержания в тканях, результатом чего также является гипоглюкоземия.
30.Понятие метаболизм, обмен. Обмен веществ - совокупность химических реакций в организме, которые обеспечивают его веществами и энергией, необходимыми для жизнедеятельности. В обмене веществ выделяют 3 этапа: 1 - поступление веществ в организм, 2- промежуточный обмен или метаболизм; 3 - выделение конечных продуктов.
Поступление веществ в организм происходит в результате дыхания (кислород), питания и пищеварения. Поступающие в пищей белки, жиры, углеводы под действием ферментов пищеварительного тракта распадаются на более простые составные части (аминокислоты, жирные кислоты и моносахариды), которые легко всасываются в кровь.
Соединения, поступающие с пищей, называются субстратами метаболизма
Метаболизм - совокупность химических реакций в организме, которые обеспечивают его веществами и энергией, необходимыми для жизнедеятельности. Метаболизм состоит из 2-х фаз: катаболизма и анаболизма.
Процесс распада сложных веществ на более простые называется катаболизмом. В процессе катаболизма сложные органические молекулы распадаются до углекислого газа, воды и мочевины. Реакции катаболизма являются экзергоническими, т.е. протекают с высвобождением энергии. Обратный процесс, т. е. синтез сложных соединений из более простых называется анаболизмом. Он идет с затратой энергии, представляет собой эндергонические реакции.
Существует понятие амфиболизм, когда одно соединение разрушается, но при этом синтезируется другое.
31.источники энергии биохим. Реакций. Макроэрги. АТФ. Интенсивность метаболизма определяется потребностью клетки в тех или иных веществах или энергии, регуляция осуществляется четырьмя путями:
1)Суммарная скорость реакций определенногометаболического пути определяется концентрацией каждого из ферментов этого пути, значением рН среды, внутриклеточной концентрацией каждого из промежуточных продуктов, концентрацией кофакторов и коферментов.
2) Активностью регуляторных (аллостерических) ферментов, которые обычно катализируют начальные этапы метаболических путей.
3) Генетический контроль, определяющий скорость синтеза того или иного фермента.
4) Гормональная регуляция. Ряд гормонов способны активировать или ингибировать многие ферменты метаболических путей.
Центральную роль в энергетическом обмене выполняет цикл АТФ - АДФ. Молекула АТФ содержит в себе три макроэргических связи. Макроэргической или богатой энергией называют химическую связь, при разрыве которой высвобождается более 4 ккал/моль. При гидролитическом расщеплении АТФ до АДФ и фосфорной кислоты высвобождается 7,3 ккал/моль. Ровно столько же тратится для образования АТФ из АДФ и остатка фосфорной кислоты и это один из основных путей запасания энергии в организме.
В макроэргических связях АТФ аккумулируется энергия, выделяемая в процессе катаболизма; Энергия АТФ используется в реакциях анаболизма и обеспечивает различные виды работы, включая сокращение мышц, активный транспорт, продукцию тепла.
В сутки человек потребляет в среднем 27 моль кислорода. Основное его количество (примерно 25 моль) используется в митохондриях в дыхательной цепи. Следовательно, ежесуточно синтезируется 125 моль ATP или 62 кг Масса всей АТР, содержащейся в организме, составляет примерно 20-30 г. Следовательно, можно сделать вывод, что каждая молекула АТР за сутки 2500 раз проходит процесс гидролиза и синтеза, что и характеризует интенсивность обмена цикла АТР – Адф.