
- •Концепции баз данных Системы управления файлами
- •Иерархические базы данных
- •Сетевые базы данных
- •Реляционные базы данных
- •Объектно-ориентированные базы данных
- •Объектно-реляционные базы данных
- •Загрузка MySql
- •Проверка исходных требований
- •Выбор версии
- •Инсталляция с помощью менеджера пакетов RedHat Linux
- •Инсталляция в Windows
- •Инсталляция вручную
- •Компиляция программы
- •Предоставление привилегий
- •Создание базы данных в Windows
- •Создание базы данных в Linux
- •Команда create database
- •Работа с таблицами
- •Использование базы данных
- •Создание таблицы
- •Синтаксис команды create table
- •Удаление таблиц
- •Синтаксис команды drop table
- •Числовые типы данных
- •Типы данных даты и времени
- •Типы данных datetime, date и timestamp
- •Тип данных time
- •Тип данных year
- •Символьные типы данных
- •Типы данных char и varchar
- •Типы данных blob и text
- •Тип перечисления enum
- •Тип множества set
- •Выбор правильного типа данных в столбце
- •Требования к памяти для различных типов столбцов
- •Запись данных в таблицы
- •Задания
- •Возможные решения
- •Выборка данных с помощью условий
- •Операторы больше и меньше
- •Задания
- •Возможные решения
- •Поиск текстовых данных по шаблону
- •Задания
- •Возможные решения
- •Предложение having
- •Задание
- •Возможное решение
- •Удаление записей из таблицы
- •Задания
- •Возможные решения
- •Операторы in и between
- •Задания
- •Возможные решения
- •Упорядочивание данных
- •Задания
- •Возможные решения
- •Ограничение количества извлекаемых данных
- •Извлечение подмножеств
- •Задания
- •Возможные решения
- •Ключевое слово distinct
- •Задания
- •Возможные решения
- •Изменение записей
- •Задания
- •Возможные решения
- •Поиск среднего значения и суммы Суммирование значений столбца с помощью функции sum
- •Вычисление среднего значения
- •Задания
- •Возможные решения
- •Работа с датой
- •Особенности типа данных Date
- •Операции с датами
- •Определение диапазонов
- •Строковые функции
- •Ascii(строка) ord(строка)
- •Concat(строка1, строка2, ...)
- •Concat_ws(разделитель, строка1, строка2, ...)
- •Conv(n, основание_начальное, основание_конечное)
- •Elt(n, строка1, строка2, строкаЗ, ...)
- •Field(строка, строка1, строка2, строка3, ...)
- •Find_in_set(строка, список_строк)
- •Substring_index(строка, разделитель, количество)
- •Trim([[both | leading | trailing] [удаляемая_строка] from] строка)
- •Uncompress(строка_для_распаковки)
- •Unhex(строка)
- •Битовые функции
- •Побитовое или ( | )
- •Побитовое и ( & )
- •Функции шифрования
- •Aes_encrypt(строка, строка_ключа) aes_decrypt(зашифрованная_строка, строка_ключа)
- •Decode(зашифрованная_строка, строка_пароля)
- •Encode(строка, строка_пароля)
- •Des_decrypt(зашифрованная_строка [, строка_ключа])
- •Des_encrypt(строка[, (номер_ключа | строка_ключа)])
- •Encrypt(строка [, нач])
- •Md5(строка)
- •Password(строка)
- •Информационные функции benchmark(количество, выражение)
- •Charset(строка)
- •Coercibility(строка)
- •Collation(строка)
- •Last_insert_id(выражение)
- •Прочие функции
- •Get_lock(строка, таймаут)
- •Inet_aton(выражение)
- •Inet_ntoa(выражение)
- •Is_free_lock(строка)
- •Master_pos_wait(имя_журнала, позиция_в_журнале [, таймаут])
- •Release_lock(строка)
- •Вывод данных из базы данных
- •Создаем ссылки на лету
- •Сохранение данных в базе данных
Объектно-ориентированные базы данных
Объектно-ориентированная база данных (ООБД) позволяет программистам, которые работают с языками третьего поколения, интерпретировать все свои информационные сущности как объекты, хранящиеся в оперативной памяти. Дополнительный интерфейсный уровень абстракции обеспечивает перехват запросов, обращающихся к тем частям базы данных, которые находятся в постоянном хранилище на диске. Изменения, вносимые в объекты, оптимальным образом переносятся из памяти на диск.
Преимуществом ООБД является упрощенный код. Приложения получают возможность интерпретировать данные в контексте того языка программирования, на котором они написаны. Реляционная база данных возвращает значения всех полей в текстовом виде, а затем они приводятся к локальным типам данных. В ООБД этот этап ликвидирован. Методы манипулирования данными всегда остаются одинаковыми независимо от того, находятся данные на диске или в памяти.
Данные в ООБД способны принять вид любой структуры, которую можно выразить на используемом языке программирования. Отношения между сущностями также могут быть произвольно сложными. ООБД управляет кэш-буфером объектов, перемещая объекты между буфером и дисковым хранилищем по мере необходимости.
С помощью ООБД решаются две проблемы. Во-первых, сложные информационные структуры выражаются в них лучше, чем в реляционных базах данных, а во-вторых, устраняется необходимость транслировать данные из того формата, который поддерживается в СУБД. Например, в реляционной СУБД размерность целых чисел может составлять 11 цифр, а в используемом языке программирования — 16. Программисту придется учитывать эту ситуацию.
Объектно-ориентированные СУБД выполняют много дополнительных функций. Это окупается сполна, если отношения между данными очень сложны. В таком случае производительность ООБД оказывается выше, чем у реляционных СУБД. Если же данные менее сложны, дополнительные функции оказываются избыточными. В объектной модели данных поддерживаются нерегламентированные запросы, но языком их составления не обязательно является SQL. Логическое представление данных может не соответствовать реляционной модели, поэтому применение языка SQL станет бессмысленным. Зачастую удобнее обрабатывать объекты в памяти, выполняя соответствующие виды поиска.
Большим недостатком объектно-ориентированных баз данных является их тесная связь с применяемым языком программирования. К данным, хранящимся в реляционной СУБД, могут обращаться любые приложения, тогда как, к примеру, Java-объект, помещенный в ООБД, будет представлять интерес лишь для приложений, написанных на Java.
Объектно-реляционные базы данных
Объектно-реляционные СУБД объединяют в себе черты реляционной и объектной моделей. Их возникновение объясняется тем, что реляционные базы данных хорошо работают со встроенными типами данных и гораздо хуже — с пользовательскими, нестандартными. Когда появляется новый важный тип данных, приходится либо включать его поддержку в СУБД, либо заставлять программиста самостоятельно управлять данными в приложении.
Не всякую информацию имеет смысл интерпретировать в виде цепочек символов или цифр. Представим себе музыкальную базу данных. Песню, закодированную в виде аудиофайла, можно поместить в текстовое поле большого размера, но как в таком случае будет осуществляться текстовый поиск?
Перестройка СУБД с целью включения в нее поддержки нового типа данных — не лучший выход из положения. Вместо этого объектно-реляционная СУБД позволяет загружать код, предназначенный для обработки "нетипичных" данных. Таким образом, база данных сохраняет свою табличную структуру, но способ обработки некоторых полей таблиц определяется извне, т.е. программистом.
Основные характеристики MySQL
Клиентская программа MySQL представляет собой утилиту командной строки. Эта программа подключается к серверу по сети. Команды, выполняемые сервером, обычно связаны с чтением и записью данных на жестком диске.
Клиентские программы могут работать не только в режиме командной строки. Есть и графические клиенты, например MySQL GUI, PhpMyAdmin и др. Но они – тема отдельного курса.
MySQL взаимодействует с базой данных на языке, называемом SQL (Structured Query Language — язык структурированных запросов).
SQL предназначен для манипуляции данными, которые хранятся в Системах управления реляционными базами данных (RDBMS).SQL имеет команды, с помощью которых данные можно извлекать, сортировать, обновлять, удалять и добавлять. Стандарты языкаSQL определяет ANSI (American National Standards Institute). В настоящее время действует стандарт, принятый в 2003 году (SQL-3).
SQL можно использовать с такими RDBMS как MySQL, mSQL, PostgreSQL, Oracle, Microsoft SQL Server, Access, Sybase, Ingres. Эти системы RDBMS поддерживают все важные и общепринятые операторы SQL, однако каждая из них имеет множество своих собственных патентованных операторов и расширений.
SQL является общим языком запросов для нескольких баз данных различных типов. Данный курс рассматривает систему MySQL, которая является RDBMS c открытым исходным кодом, доступной для загрузки на сайте MySQL.com.
Вот как характеризуют MySQL её разработчики.
MySQL - это система управления базами данных.
База данных представляет собой структурированную совокупность данных. Эти данные могут быть любыми - от простого списка предстоящих покупок до перечня экспонатов картинной галереи или огромного количества информации в корпоративной сети. Для записи, выборки и обработки данных, хранящихся в компьютерной базе данных, необходима система управления базой данных, каковой и является ПО MySQL. Поскольку компьютеры замечательно справляются с обработкой больших объемов данных, управление базами данных играет центральную роль в вычислениях. Реализовано такое управление может быть по-разному - как в виде отдельных утилит, так и в виде кода, входящего в состав других приложений.
MySQL - это система управления реляционными базами данных.
В реляционной базе данные хранятся в отдельных таблицах, благодаря чему достигается выигрыш в скорости и гибкости. Таблицы связываются между собой при помощи отношений, благодаря чему обеспечивается возможность объединять при выполнении запроса данные из нескольких таблиц. SQL как часть системы MySQL можно охарактеризовать как язык структурированных запросов плюс наиболее распространенный стандартный язык, используемый для доступа к базам данных.
Программное обеспечение MySQL - это ПО с открытым кодом.
ПО с открытым кодом означает, что применять и модифицировать его может любой желающий. Такое ПО можно получать поInternet и использовать бесплатно. При этом каждый пользователь может изучить исходный код и изменить его в соответствии со своими потребностями.
Технические возможности СУБД MySQL
ПО MySQL является системой клиент-сервер, которая содержит многопоточный SQL-сервер, обеспечивающий поддержку различных вычислительных машин баз данных, а также несколько различных клиентских программ и библиотек, средства администрирования и широкий спектр программных интерфейсов (API).
Безопасность
Система безопасности основана на привилегиях и паролях с возможностью верификации с удаленного компьютера, за счет чего обеспечивается гибкость и безопасность. Пароли при передаче по сети при соединении с сервером шифруются. Клиенты могут соединяться с MySQL, используя сокеты TCP/IP, сокеты Unix или именованные каналы (named pipes, под NT)
Вместимость данных
Начиная с MySQL версии 3.23, где используется новый тип таблиц, максимальный размер таблицы доведен до 8 миллионов терабайт (263 bytes). Однако следует заметить, что операционные системы имеют свои собственные ограничения по размерам файлов. Ниже приведено несколько примеров:
- 32-разрядная Linux-Intel – размер таблицы 4 Гб.
- Solaris 2.7 Intel - 4 Гб
- Solaris 2.7 UltraSPARC - 512 Гб
- WindowsXP - 4 Гб
Как можно видеть, размер таблицы в базе данных MySQL обычно лимитируется операционной системой. По умолчанию MySQL-таблицы имеют максимальный размер около 4 Гб. Для любой таблицы можно проверить/определить ее максимальный размер с помощью команд SHOW TABLE STATUS или myisamchk -dv table_name. Если большая таблица предназначена только для чтения, можно воспользоваться myisampack, чтобы слить несколько таблиц в одну и сжать ее. Обычно myisampack ужимает таблицу по крайней мере на 50%, поэтому в результате можно получить очень большие таблицы.
Лекция 2.
Пользователю базы данных необязательно знать, как инсталлировать MySQL. В крупных организациях есть системные администраторы, которые этим занимаются. Что касается разработчиков, то им нужно понимать особенности данного процесса. Именно здесь у них появляется доступ к различным конфигурационным установкам, с помощью которых можно настроитьпроизводительность программы. Естественно, необходимо обладать правами администратора на том компьютере, где MySQL устанавливается в виде сервиса, запускаемого автоматически. Программу можно запускать также из персональных учетных записей.