- •Передмова
- •Розділ 1. Методологія науки. Наукове пізнання: форми, методи, підходи
- •1.1. Методологія в системі наук
- •1.2. Наука як об'єкт методологічного аналізу
- •1.3. Наукове пізнання
- •1.4. Основні форми наукового знання
- •1.5. Методи наукового пізнання
- •Розділ 2. Класифікація наук. Методи наукової роботи. Вибір теми та інформаційне забезпечення дослідження
- •2.1. Класифікація наук
- •2.2. Поняття методу наукової діяльності
- •2.3. Вибір теми дослідження та інформаційне забезпечення наукової роботи
- •2.4. Особистісні фактори в методології науки
- •2.5. Методи пошуку нових рішень
- •2.6.Форми обміну науковою інформацією
- •2.7. Інтерес до науки. Типологія вчених
- •Розділ 3. Елементи математичної статистики у науковому дослідженні
- •3.1. Методи зведення й обробки результатів емпіричних досліджень
- •Розподіл учнів шкіл за віком
- •Розподіл учнів шкіл за статтю та віком
- •3.2. Застосування математичної статистики в дослідженнях
- •3.2.1. Вимірювальні шкали
- •3.2.2. Міри центральної тенденції
- •(Формула 3.4),
- •3.2.3. Методи порівняння результатів дослідження
- •Параметричні методи порівняння результатів дослідження
- •(Формула 3.7),
- •Непараметричний метод порівняння результатів
- •3.2.5. Методи встановлення зв’язку
- •Лінійна кореляція (за к.Пірсоном)
- •(Формула 3.11)
- •Порядкова, або рангова кореляція (за Спірменом)
- •Ранжування сукупності значень
- •Робоча таблиця підрахунку коефіцієнта рангової кореляції
- •Ранжування сукупності значень шкільних оцінок
- •Розділ 4. Методичні матеріали з підготовКи магістрів
- •4.1. Положення про підготовку магістрів у Глухівському національному педагогічному університеті імені Олександра Довженка
- •4.1.1. Загальні положення
- •4.1.2. Вимоги до магістерської програми
- •4.1.3. Прийом до магістратури
- •4.1.4. Організація навчання в магістратурі
- •4.1.5. Підсумкова державна атестація
- •4.1.6. Вимоги до змісту кваліфікаційної роботи магістра
- •4.2. Положення про магістерську роботу
- •4.3. Технологія підготовки магістерської роботи
- •4.3.1. Основні вимоги до магістерської (дипломної) роботи
- •4.3.2. Зміст та структура магістерської роботи
- •4.3.3. Організація емпіричного дослідження або педагогічного експерименту
- •4.3.4. Оформлення літератури та додатків
- •4.3.5. Літературне оформлення магістерської роботи
- •4.3.6. Орієнтовний графік роботи над магістерським дослідженням
- •4.3.7. Керівництво роботою та підготовка до захисту
- •4.3.8. Порядок захисту
- •4.3.9. Критерії оцінювання магістерських робіт
- •Рекомендована література
- •Додатки Додаток а Бібліографічний опис у списку використаних джерел Загальні вимоги і правила складання
- •Приклади оформлення бібліографічного опису у списках літератури при написанні курсових, дипломних та дисертаційних робіт
- •Міністерство освіти і науки, молоді та спорту україни Глухівський національний педагогічний університет імені Олександра Довженка
- •Магістерська робота
- •Глухів 20 __ р.
- •Відгук на магістерську роботу
- •Рецензія на магістерську роботу
- •Зміст рецензії
(Формула 3.4),
де N – кількість членів ряду.
Якщо N – непарне число, тобто у варіаційному ряді непарна кількість членів, то медіаною буде значення середнього члена ряду. Наприклад, у ряді 1, 2, 5, 8, 10, 31, 35 медіаною (Ме) буде число 8.
Якщо N – парне число, тобто у варіаційному ряді парна кількість членів, то у його середині знаходяться два значення. У такому випадку для інтервальних шкал необхідно обчислити одну величину медіани. Нею буде просте середнє арифметичне двох сусідніх середніх членів. Наприклад, для ряду 1, 2, 5, 8, 9, 10, 31, 35 медіаною (Ме) буде число 8,5.
Мода (Мо) – це значення, що найчастіше зустрічається у даному варіаційному ряді значень. Вона використовується для характеристики сукупності на основі найпоширенішого явища, наприклад: найпоширеніша оцінка з предмету в класі, найпоширеніша кількість відповідей на тестуванні, найпоширеніша національність учнів класу. Моду можна знаходити для всіх шкал без винятку.
Модою буде те значення ряду, що має найбільшу частоту (f). Наприклад, для такого ряду шкільних оцінок 3, 4, 5, 6, 7, 7, 8, 9 модою буде число 7, а для ряду 3, 4, 5, 6, 8, 7, 5, 7, 4, 4, 9, 8, 7, 8, 9 модами будуть 4 і 7. Отже, у ряді може бути декілька мод.
3.2.3. Методи порівняння результатів дослідження
Методи порівняння результатів дослідження дозволяють досліднику зробити узагальнення про однорідність вибірок (подібність чи відмінність досліджуваних класів, груп учнів тощо). У педагогіці їх найчастіше застосовують у таких випадках:
для порівняння контрольних і експериментальних груп, що мають бути подібними за досліджуваною ознакою, до проведення формувального етапу експерименту;
для визначення достовірних відмінностей між результатами контрольних та експериментальних груп після проведення формувального етапу експерименту.
Вибір методів порівняння результатів дослідження також залежить від того, за допомогою якої шкали вимірювалися значення досліджуваної ознаки. Для інтервальних шкал, якщо значення ознаки, що аналізується, розподіляються рівномірно навколо середнього арифметичного, використовують параметричні методи порівняння результатів дослідження на основі F і t критеріїв. Для порядкових шкал і нерівномірного розподілу значень доцільним є застосування непараметричного методу порівняння результатів дослідження – методу χ2 (хі – квадрата). У педагогіці доцільніше користуватися непараметричним методом χ2, оскільки при написанні курсових чи дипломних робіт експериментальне дослідження, як правило, проводиться на малих вибірках (від 20 до 40 учнів у класі).
Параметричні методи порівняння результатів дослідження
Використовуються для значень, отриманих у результаті вимірювання інтервальними шкалами. Ґрунтуються на порівнянні різних параметрів досліджуваних вибірок (середніх значень, дисперсій тощо).
Вибір формули обчислення t-критерію, що служить для порівняння двох вибірок, залежить від того чи подібні ці дві групи за F-критерієм. Отже, починати порівнювати дві вибірки слід з обчислення Femp за формулою:
(Формула
3.5)
де σ1 – дисперсія першої сукупності,
σ2 – дисперсія другої сукупності,
причому σ1 > σ2
Дисперсія – показник, що характеризує розсіяння значень елементів сукупності (вибірки) навколо її середнього арифметичного значення. Дисперсію обчислюють за формулою:
(Формула
3.6)
де xi – значення окремих елементів сукупності;
– середнє
арифметичне сукупності;
N – обсяг вибірки (кількість членів сукупності).
Корінь з дисперсії називають середньоквадратичним, або стандартним відхиленням
