Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lekts_12-14-2013.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.77 Mб
Скачать

3 Основные коды, применяемые в связи

Коды без возврата к нулю

Потенциальное кодирование, также называется кодированием без возвращения к нулю (NRZ) (рис.1). При передаче нуля он передает потенциал, который был установлен на предыдущем такте (то есть не меняет его), а при передаче единицы потенциал инвертируется на противоположный. Этот код называется потенциальным кодом с инверсией при единице (NRZI) (рис.2). Он удобен в тех случаях, когда наличие третьего уровня сигнала весьма нежелательно, например, в оптических кабелях, где устройство распознаются только два сигнала – свет и темнота.

Потенциальный код NRZ

Рисунок 1 – Диаграмма кода NRZ

Для передачи единиц и нулей используются два устойчиво различаемых потенциала:

  • биты 0 представляются значением U (В);

  • биты 1 представляются нулевым напряжением (0 В).

Потенциальный код NRZI

Рисунок 2 – диаграмма кода NRZI

При передаче последовательности единиц, сигнал, в отличие от других методов кодирования, не возвращается к нулю в течение такта. То есть смена сигнала происходит при передаче единицы, а передача нуля не приводит к изменению напряжения.

Достоинства метода NRZ:

— простота реализации;

— хорошая распознаваемость ошибок (благодаря наличию двух резко отличающихся потенциалов);

— основная гармоника f0 имеет достаточно низкую частоту (равную N/2 Гц, где N — битовая скорость передачи дискретных данных [бит/с]), что приводит к узкому спектру.

Недостатки метода NRZ:

— Метод не обладает свойством самосинхронизации. Даже при наличии высокоточного тактового генератора приёмник может ошибиться с выбором момента съёма данных, так как частоты двух генераторов никогда не бывают полностью идентичными. Поэтому при высоких скоростях обмена данными и длинных последовательностях единиц или нулей небольшое рассогласование тактовых частот может привести к ошибке в целый такт и, соответственно, считыванию некорректного значения бита.

— наличие низкочастотной составляющей, которая приближается к постоянному сигналу при передаче длинных последовательностей единиц и нулей. Из-за этого многие линии связи, не обеспечивающие прямого гальванического соединения между приёмником и источником, этот вид кодирования не поддерживают. Поэтому в сетях код NRZ в основном используется в виде различных его модификаций, в которых устранены как плохая самосинхронизация кода, так и проблемы постоянной составляющей.

Коды с возвратом к нулю

То есть каждый бит передается 3-мя уровнями напряжения. Поэтому требует в 2 раза больше скорости по сравнению с обычной скоростью. Используется в оптоволокне. Это квазитроичный код, то есть изменение сигнала происходит между 3-мя уровнями.

Код RZ (Return to Zero – с возвратом к нулю) – этот трехуровневый код получил такое название потому, что после значащего уровня сигнала в первой половине битового интервала следует возврат к некоему "нулевому", среднему уровню (например, к нулевому потенциалу). Переход к нему происходит в середине каждого битового интервала. Логическому нулю, таким образом, соответствует положительный импульс, логической единице – отрицательный (или наоборот) в первой половине битового интервала.

В центре битового интервала всегда есть переход сигнала (положительный или отрицательный), следовательно, из этого кода приемник легко может выделить синхроимпульс (строб). Возможна временная привязка не только к началу пакета, как в случае кода NRZ, но и к каждому отдельному биту, поэтому потери синхронизации не произойдет при любой длине пакета.

Еще одно важное достоинство кода RZ – простая временная привязка приема, как к началу последовательности, так и к ее концу. Приемник просто должен анализировать, есть изменение уровня сигнала в течение битового интервала или нет. Первый битовый интервал без изменения уровня сигнала соответствует окончанию принимаемой последовательности бит (рис. 3). Поэтому в коде RZ можно использовать передачу последовательностями переменной длины.

Рисунок 3 - Определение начала и конца приема при коде RZ

Недостаток кода RZ состоит в том, что для него требуется вдвое большая полоса пропускания канала при той же скорости передачи по сравнению с NRZ (так как здесь на один битовый интервал приходится два изменения уровня сигнала). Например, для скорости передачи информации 10 Мбит/с требуется пропускная способность линии связи 10 МГц, а не 5 МГц, как при коде NRZ (рис. 3).

Другой важный недостаток – наличие трех уровней, что всегда усложняет аппаратуру как передатчика, так и приемника.

Код RZ применяется не только в сетях на основе электрического кабеля, но и в оптоволоконных сетях. Правда, в них не существует положительных и отрицательных уровней сигнала, поэтому используется три следующие уровня: отсутствие света, "средний" свет, "сильный" свет. Это очень удобно: даже когда нет передачи информации, свет все равно присутствует, что позволяет легко определить целостность оптоволоконной линии связи без дополнительных мер (рис. 4).

Рисунок 4 - Использование кода RZ в оптоволоконных сетях

Манчестерский код (или код Манчестер-II) получил наибольшее распространение в локальных сетях. Он также относится к самосинхронизирующимся кодам, но в отличие от RZ имеет не три, а всего два уровня, что способствует его лучшей помехозащищенности и упрощению приемных и передающих узлов. Логическому нулю соответствует положительный переход в центре битового интервала (то есть первая половина битового интервала – низкий уровень, вторая половина – высокий), а логической единице соответствует отрицательный переход в центре битового интервала (или наоборот).

Как и в RZ, обязательное наличие перехода в центре бита позволяет приемнику манчестерского кода легко выделить из пришедшего сигнала синхросигнал и передать информацию сколь угодно большими последовательностями без потерь из-за рассинхронизации. Допустимое расхождение часов приемника и передатчика может достигать 25%.

Подобно коду RZ, при использовании манчестерского кода требуется пропускная способность линии в два раза выше, чем при применении простейшего кода NRZ. Например, для скорости передачи 10 Мбит/с требуется полоса пропускания 10 МГц (рис.5).

Рисунок 5 - Скорость передачи и пропускная способность при манчестерском коде

Как и при коде RZ, в данном случае приемник легко может определить не только начало передаваемой последовательности бит, но и ее конец. Если в течение битового интервала нет перехода сигнала, то прием заканчивается. В манчестерском коде можно передавать последовательности бит переменной длины (рис. 6). Процесс определения времени передачи называют еще контролем несущей, хотя в явном виде несущей частоты в данном случае не присутствует.

Рисунок 6 - Определение начала и конца приема при манчестерском коде

Манчестерский код используется как в электрических, так и в оптоволоконных кабелях (в последнем случае один уровень соответствует отсутствию света, а другой – его наличию).

Основное достоинство манчестерского кода – постоянная составляющая в сигнале (половину времени сигнал имеет высокий уровень, другую половину – низкий). Постоянная составляющая равна среднему значению между двумя уровнями сигнала.

Если высокий уровень имеет положительную величину, а низкий – такую же отрицательную, то постоянная составляющая равна нулю. Это дает возможность легко применять для гальванической развязки импульсные трансформаторы. При этом не требуется дополнительного источника питания для линии связи (как, например, в случае использования оптронной гальванической развязки), резко уменьшается влияние низкочастотных помех, которые не проходят через трансформатор, легко решается проблема согласования.

Если же один из уровней сигнала в манчестерском коде нулевой (как, например, в сети Ethernet), то величина постоянной составляющей в течение передачи будет равна примерно половине амплитуды сигнала. Это позволяет легко фиксировать столкновения пакетов в сети (конфликт, коллизию) по отклонению величины постоянной составляющей за установленные пределы.

Частотный спектр сигнала при манчестерском кодировании включает в себя только две частоты: при скорости передачи 10 Мбит/с это 10 МГц (соответствует передаваемой цепочке из одних нулей или из одних единиц) и 5 МГц (соответствует последовательности из чередующихся нулей и единиц: 1010101010...). Поэтому с помощью простейших полосовых фильтров можно легко избавиться от всех других частот (помехи, наводки, шумы).

Потенциальный код 2B1Q

Рисунок 7 – Диаграмма кода 2B1Q

Код 2B1Q (рис.7) передает пару бит за один битовый интервал. Каждой возможной паре в соответствие ставится свой уровень потенциала. Паре 00 соответствует потенциал −2.5 В, 01 соответствует −0.833 В, 11 — +0.833 В, 10 — +2.5 В.

Достоинство метода 2B1Q: Сигнальная скорость у этого метода в два раза ниже, чем у кодов NRZ и AMI, а спектр сигнала в два раза уже. Следовательно с помощью 2B1Q-кода можно по одной и той же линии передавать данные в два раза быстрее.

Недостаток метода 2B1Q: Реализация этого метода требует более мощного передатчика и более сложного приемника, который должен различать четыре уровня.

HDB3

Код HDB3 исправляет любые 4 подряд идущие нули в исходные последовательности. Правило формирования кода следующее: каждые 4 нуля заменяются 4 символами в которых имеется хотя бы один сигнал V. Для подавления постоянной составляющей полярность сигнала V чередуется при последовательных заменах. Для замены используются два способа: 1) если перед заменой исходный код содержал нечётное число единиц то используется последовательность 000V, если чётное то 100V

V-cигнал единицы запрещённого для данного сигнала полярности

Скремблированные коды

Эти коды применяются для того, чтобы исключить длительные последовательности одинакових цифр.

Схема псевдослучайного скремблирующего кода представлена на рисунке 8.

Рисунок 8 - Схема формирования скремблирующей последовательности

Псевдослучайную последовательность формируют семь D – триггеров и сумматор по модулю два. Цифровые данные перемещаются из триггера в триггер при поступлении опорного такта на вход "С". Благодаря сумматору по модулю два образуется псевдослучайный код.

Операция сложения по модулю два заключается в следующем:

А В = С

1  1  0

1  0  1

0  1  1

0  0  0

Псевдослучайная последовательность в ВОСП для линейного кодирования формируется циклически, так линейный код SDH воспроизводится за сто двадцать семь тактов(G.707). Для формирования линейного скремблированного кода в формате NRZ генерируется образующий полином по схеме:

g(x) = 1 + х 6 + х 7

где х n обозначает единицу в n – м разряде, то есть в разрядах шестом и седьмом. Общая длина скремблирующей последовательности равна семи.

На приеме нужно повернуть процедуру в обратном порядке.

Загрузка производится по общей шине. Загрузка исходного состояния "единица".

Процедура скремблирования на рисунке 9 (процедура суммирования по модулю два).

Рисунок 9 - Формирование псевдослучайного скремблирующего кода

После скремблирования происходит формирование линейного сигнала NRZ. На рисунке 10 представлена скремблированная последовательность и временная диаграмма сигнала.

Рисунок 10 - Формирование линейного сигнала NRZ

При скремблировании линейного сигнала системы SDH группа двоичных символов, расположенная в начале цикла STM – N не подвергается преобразованию в скремблере. Эта группа символов (шесть байт * N) образует синхрослово, которое нужно для распознавания цикла STM – N на приемной стороне. Обнаружение цикла STM – N в приемной части позволяет запустить процедуру дескремблирования и восстанавливать информационный сигнал из линейного.

Основные достоинства скремблированного линейного сигнала ВОСП:

- стабильность скорости передачи по линии;

- достаточно точное выделение тактовой частоты для регенерации;

- скремблер делает любой информационный сигнал помехоустойчивым при передаче по ВОЛС.

Недостаток: возможность размножения ошибок (поэтому длительность делают ограниченной, циклической).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]