
Лекции / Лекции по математической статистике / 02_Случайные величины (общая теория) / 02_Закон распределения
.doc§2. Закон распределения
Когда мы проводим наблюдения над случайной величиной, мы можем обнаружить, что одни возможные значения появляются чаще, другие реже. Т.е., у одних значений вероятность появления больше, у других меньше.
П
-
Опыт – бросание кубика.
Случайная величина Х – выпавшее число очков.
Возможные значения {1, 2, 3, 4, 5, 6 }.
-
Опыт – трехкратное бросание монеты.
Случайная величина Х –число выпавших гербов .
Возможные значения { 0, 1, 2, 3 }.
-
Опыт – лекция по теории вероятностей.
Случайная величина Х – число присутствующих студентов.
Возможные значения { 0, 1, 2, …, N }.
-
Опыт – работа банковского служащего в течение часа.
Случайная величина Х – число обслуженных клиентов.
Возможные значения { 0, 1, 2, …, N }.
О3 :Законом распределения вероятностей случайной величины Х (дальше везде будем говорить кратко – Законом распределения) называется всякое правило, устанавливающее соответствие между возможными значениями случайной величины и вероятностями того, что она примет эти значения.
Это соответствие можно устанавливать по-разному, в зависимости от того, с какой случайной величиной мы работаем, с дискретной или с непрерывной. Существуют три способа задания закона распределения, которые мы далее по очереди подробно рассмотрим.
Сейчас мы только перечислим их и отметим главное: если закон распределения задан (любым из этих способов) то мы можем прогнозировать поведение случайной величины. Точно предсказать до опыта, какое именно значение примет случайная величина, мы не можем в принципе, но зато мы сможем подсчитывать вероятность того, что она примет то или иное значение, попадет в интересующий нас интервал.
Способы задания закона распределения:
-
Ряд распределения;
-
Функция распределения F(x)
( иногда ее еще называют интегральная Функция распределения)
-
Плотность распределения f(x)
(ее еще называют также дифференциальная Функция распределения )
Следующая схема показывает, когда применяется каждый из этих способов: