- •1)Динамические характеристики средств измерения.
- •2) Единицы измерения, международная система си.
- •3) Аналоговые электромеханические приборы для измерения силы тока и напряжения. Магнитоэлектрические измерительные механизмы.
- •4) Методы измерений. Дифференициальный метод: сущность, достоинства и недостатки.
- •5) Метрологические характеристики средств измерений, предназначенные для определения результатов измерений.
- •6) Виды стандартов.
- •7) Разновидности измерений. Органолептические измерения.
- •8) Регрессионный анализ. Критерии проверки достоверности гипотезы о виде уравнения регрессии.
- •9) Общая характеристика системы стандартизации и направление её реформирования.
- •10) Определение доверительного материала. Неравенство Чебышева
- •11) Основной постулат метрологии.
- •12) Комплексные системы общетехнических стандартов.
- •13) Факторы влияющие на результат измерения: условия выполнения измерений.
- •14) Принципы стандартизации.
- •15) Принципы технического регулирования.
- •16) Техническое законодательство и техническое регулирование.
- •17) Функции стандартизации.
- •18) Цели стандартизации.
- •19) Многократные измерения. Проверка нормальности закона распределения.
- •20) Нормирование метрологических характеристик. Классы точности.
- •21) Государственный метрологический надзор.
- •22) Обработка результатов серий измерений: алгоритм и специфика обработки.
- •23) Общая классификация измерений.
- •24) Измерение напряжения и силы тока: выбор методов и средств.
- •25)Обработка результатов серий измерений: использование средневзвешенных оценок.
- •26) Однократное измерение. Использование информации о законе распределения вероятности результатов измерений.
- •27) Калибровка средств измерений.
- •28)Многократное измерение: алгоритм.
- •29) Нормирование относительной погрешности.
- •30) Задачи стандартизации.
- •31) Однократные измерения. Виды априорной информации.
- •32) Определение доверительного интервала. Использование информации о виде закона распределения.
- •33) Классификация эталонов.
- •34) Объекты измерений. Классификация физических величин.
- •35) Факторы, влияющие на результат измерения: объект измерений.
- •36) Передача размеров единиц физических величин. Проверочные схемы
- •37) Инструментальные и органолептические измерения. Достоинства и недостатки.
- •38) Интегральные оценки результатов измерения.
- •39) Аналоговые электромеханические приборы для измерений силы тока и напряжения. Электродинамические измерительные механизмы.
- •40) Методы измерений. Метод непосредственной оценки: сущность, достоинства и недостатки.
- •41) Метрологические характеристики средств измерений. Характеристики чувствительности к влияющим факторам.
- •42) Воспроизведение единиц физических величин и передача их размеров.
- •43) Роль априорной информации при однократном измерении.
- •44) Системы физических величин и их единиц: основные определения.
- •45)Объекты государственного метрологического надзора.
- •46) Основные понятия метрологии: метрология, измерения, единство измерений, точность измерений. Значение метрологии для научно-технического прогресса
- •47) Повышение точности на этапе обработки результатов измерений.
- •48) Метрологическая аттестация средств измерений и испытательного оборудования.
- •49) Факторы, влияющие на результат измерения: средства измерений.
- •50) Шкалы. Шкалы интервалов, отношений и абсолютные.
- •51) Поверка средств измерений. Виды поверок.
- •52) Повышение точности на этапе подготовки к измерениям
- •53) Погрешность средств измерений. Абсолютная, относительная, приведённая погрешность.
- •54)Метрологические службы и организации
- •55) Средства измерений, их классификация
- •56) Точечные оценки результатов измерения
- •57) Основы метрологического обеспечения
- •58) Факторы влияющие на результат измерения: субъект.
- •59) Шкалы. Шкалы: наименований, порядка.
- •60) Понятие эталонов. Свойства эталонов.
- •61)Методы измерений. Метод совпадений: сущность, достоинства и недостатки.
- •62)Метрологические характеристики средств измерений. Характеристики погрешностей.
- •63)Государственный метрологический контроль: виды, сферы распространения.
- •64)Нормирование приведённой погрешности. Определение нормирующего значения.
- •65)Обработка результатов измерений при нахождении зависимостей. Регрессионный анализ.
- •66) Измерение мощности.
- •67)Инструментальные измерения: прямые, косвенные, совокупные, совместные.
- •68. Математические действия над результатами измерений: косвенные измерения.
- •69)Аналоговые электромеханические приборы для измерения силы тока и напряжения. Электромагнитные измерительные механизмы.
- •70)Методы измерений, их классификация.
- •71)Метрологические характеристики средств измерений.
- •72) Аналоговые электромеханические приборы для измерения силы тока и напряжения. Электростатические измерительные механизмы.
- •73)Обработка результатов серий измерений: понятие однородности.
- •74)Однократное измерение. Использование информации о классе точности средства измерений.
- •75)Классификация измерений.
- •76)Факторы влияющие на результат измерения: метод измерений
- •77) Частные динамические характеристики средств измерений.
- •78) Первичные преобразователи. Терморезистивные и термоэлектрические преобразователи.
- •79) Обработка результатов косвенных измерений.
- •80)Обработка результатов однократных измерений.
- •81) Измерение силы переменного тока.
- •82)Повышение точности на этапе проведения измерений.
- •83)Полные динамические характеристики средств измерений.
- •84)Мостовые измерительные схемы.
- •85)Методы измерений. Нулевой метод: сущность, достоинства и недостатки.
- •86)Многократные измерения. Исключение ошибок.
- •87) Государственные метрологический контроль: поверка средств измерений.
- •88. Объекты измерений. Классификация величин.
- •89) Учёт влияющих факторов. Внесение поправок. Аддитивные и мультипликативные поправки.
- •90)Технический регламент: понятие, содержание, виды.
22) Обработка результатов серий измерений: алгоритм и специфика обработки.
2. Измерения с многократными наблюдениями. Обработку результатов в этом случае рекомендуется начать с проверки на отсутствие промахов (грубых погрешностей). Промах — это результат xп отдельного наблюдения, входящего в ряд из n наблюдений, который для данных условий измерений резко отличается от остальных результатов этого ряда. Если оператор в ходе измерения обнаруживает такой результат и достоверно находит его причину, он вправе его отбросить и провести (при необходимости) дополнительное наблюдение взамен отброшенного.
При обработке уже
имеющихся результатов наблюдений
произвольно отбрасывать отдельные
результаты нельзя, так как это может
привести к фиктивному повышению точности
результата измерения. Поэтому применяют
следующую процедуру. Вычисляют среднее
арифметическое
результатов наблюденийхi
по формуле
.
(3.9)
Затем вычисляют оценку СКО результата наблюдения как
![]()
Находят отклонение
vп
предполагаемого
промаха xп
от
:
vп
=
xп
-
.
По числу всех
наблюдений n
(включая xп)
и принятому для измерения значению Р
(обычно 0,95) по [4] или любому справочнику
по теории вероятностей находят z(P,n) —
нормированное выборочное отклонение
нормального распределения. Если vп
< zS(x),
то наблюдение xп
не является
промахом; если vп
zS(x),
то xп
— промах, подлежащий исключению. После
исключения xп
повторяют
процедуру определения
и S(x) для оставшегося ряда результатов
наблюдений и проверки на промах
наибольшего из оставшегося ряда
отклонений от нового значениям
(вычисленного исходя из n - 1).
За результат
измерения принимают среднее арифметическое
[см.
формулу (3.9)] результатов наблюденийхi.
Погрешность
содержит случайную и систематическую
составляющие. Случайную составляющую,
характеризуемую СКО результата измерения,
оценивают по формуле
.
В предположении
принадлежности результатов наблюдений
хi
к нормальному распределению находят
доверительные границы случайной
погрешности результата измерения при
доверительной вероятности Р
по формуле (P)
= t(P,n)
S(
)
, (3.11)
где t - коэффициент Стьюдента.
Доверительные границы (Р) НСП результата измерения с многократными наблюдениями определяют точно так же, как и при измерении с однократным наблюдением — по формулам (3.3) или (3.4).
Суммирование
систематической и случайной составляющих
погрешности результата измерения при
вычислении (Р)
рекомендуется осуществлять с
использованием критериев и формул (3.6
– 3.8), в которых при этом S(x) заменяется
на S(
)
= S(x)/
.
23) Общая классификация измерений.
Понятие область измерений – совокупность измерений физических величин, свойственных какой-либо области науки или техники и выделяющихся своей спецификой. В соответствии с определением выделяют ряд областей измерений: механические измерения, магнитные, акустические, измерения ионизирующих излучений и др.
Видом измерений названа часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин. Как примеры видов измерений приведены измерения электрического сопротивления, электродвижущей силы, электрического напряжения, магнитной индукции, относящиеся к области электрических и магнитных измерений. Дополнительно выделеныподвиды измерений – часть вида измерений, выделяющаяся особенностями измерений однородной величины (по диапазону, по размеру величины и др.) и примеры подвидов (измерения больших длин, имеющих порядок десятков, сотен, тысяч километров или измерения сверхмалых длин — толщин пленок как подвиды измерений длины).
Более широкая трактовка видов измерений (с использованием различных оснований классификации) позволяет отнести к ним также приведенные в том же документе, но не сформированные в классификационные группы измерения, характеризуемые следующими альтернативными парами терминов:
— прямые и косвенные измерения,
— совокупные и совместные измерения,
— абсолютные и относительные измерения,
— однократные и многократные измерения,
— статические и динамические измерения,
— равноточные и неравноточные измерения.
Прямые и косвенные измерения различают в зависимости от способа получения результата измерений.
Прямое измерение – измерение, при котором искомое значение физической величины получают непосредственно.
Косвенное измерение – определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной.
Совокупные измерения – проводимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях.
Совместные измерения – проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними.
Абсолютное измерение – измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.
Относительное измерение – измерение отношения величины к одноименной величине, играющей роль единицы, или измерение изменения величины по отношению к одноименной величине, принимаемой за исходную.
Статическое измерение – измерение физической величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения. Приведенные примеры (измерение длины детали при нормальной температуре и измерение размеров земельного участка) скорее запутывают, чем проясняют ситуацию.
Динамическое измерение – измерение изменяющейся по размеру физической величины.
Равноточные измерения – ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью.
Неравноточные измерения – ряд измерений какой-либо величины, выполненных различающимися по точности средствами измерений и (или) в разных условиях.
