
- •Т. С. Онискевич конспекты лекций по основам высшей математики (экспресс-курс для студентов-психологов)
- •Глава 5
- •Глава 1 теория множеств
- •Основные понятия
- •Операции над множествами
- •1.3. Соответствия и отношения
- •1.4. Элементы теории множеств в анализе психологических явлений
- •Глава 2 элементы логики высказываний
- •Высказывания и операции над ними
- •Формулы и законы логики высказываний
- •Глава 3 элементы линейной алгебры
- •Матрицы. Основные понятия
- •Операции над матрицами
- •Умножение матрицы на число
- •Сложение матриц
- •Произведение матриц
- •Определители квадратных матриц и их свойства
- •Системы линейных уравнений. Основные понятия и определения
- •3.5. Решение систем линейных уравнений
- •Применение элементов линейной алгебры в психологии
- •Глава 4 основы математического анализа
- •4.1. Понятие функции
- •4.2. Элементарные функции
- •Предел функции
- •4.4. Непрерывность функций.
- •4.5. Производная
- •4.6. Правила дифференцирования
- •4.7. Таблица производных
- •4.8. Возрастание и убывание функции. Экстремумы функции
- •4.9. Неопределённый интеграл
- •4.10. Определённый интеграл
- •4.11. Использование математического анализа в психологии
- •Глава 5 элементы теории вероятностей
- •5.1. Основы комбинаторики
- •Правило суммы
- •Правило произведения
- •Основные комбинации и формулы для их подсчета
- •5.2. Вероятность случайного события
- •1. Классическое определение вероятности
- •2. Статистическое определение вероятности
- •5.3. Действия над событиями
- •Примеры:________________________________________________________________________
- •5.4. Основные теоремы теории вероятностей
- •1. Теоремы сложения
- •Примеры:________________________________________________________________________
- •Условная вероятность и теоремы умножения
- •Примеры:________________________________________________________________________
- •5.5. Формула полной вероятности и формула Байеса
- •5.6. Формула Бернулли
- •5.7. Формула Пуассона
- •5.8. Локальная формула Муавра – Лапласа
- •5.9. Интегральная формула Муавра – Лапласа
- •5.10. Случайные величины. Закон распределения случайной величины
- •5.11. Функция распределения случайной величины. Ее свойства
- •5.12. Математическое ожидание и дисперсия дискретной случайной величины
- •5.13 Непрерывные случайные величины. Плотность распределения
- •5.14 Числовые характеристики непрерывной случайной величины
- •5.15 Применение вероятностных методов в психологии
Предел функции
Понятие предела является математическим выражением факта одновременного стремления двух связанных величин к некоторым значениям.
Примеры:
__________________________________________________________________________________
если вы читаете литературу со скоростью 60 страниц в час, то при стремлении времени чтения к двум часам числе прочитанных страниц будет стремиться к 120;
если количество рекламных вставок равно 30 в час, то при приближении времени просмотра телепередачи к трем часам число реклам будет приближаться к 90;
вы усиленно работаете над своим характером, чтобы быть похожим на Васю, который нравится Марине, а она нравится вам; тогда, если вы станете похожим на Васю, степень благосклонности Марины к вам будет почти такой же, как и к Васе [1, с. 112].
_______________________________________________________________
Понятие предела является одним из основных в математике. Рассмотрим любую функцию, например у = x3; зададим любое значение х, к примеру, х = 2. Возьмём последовательность чисел x, близких к числу 2, и вычислим значения уi = хi3. Один из вариантов последовательностей чисел xi и уi. приведен в табл. 4.3.
Таблица 4.3
x |
1,96 |
1,97 |
1,98 |
1,99 |
2 |
2,01 |
2,02 |
2,03 |
2,04 |
y |
7,53 |
7,64 |
7,76 |
7,88 |
8 |
8,12 |
8,24 |
8,36 |
8,49 |
Приведенная в таблице последовательность чисел имеет следующую закономерность: чем меньше число х отличается от числа 2, тем меньше соответствующее значение у отличается от числа 8. Т. е. при стремлении числа х к 2 число у стремится к 8, какие бы последовательности чисел xi и уi = хi3 мы ни рассматривали.
Число А называется пределом функции у = f(x) при стремлении х к а (или в точке х = а), если для всех значений х (х ≠ а), сколь угодно мало отличающихся от а, соответствующие значения у сколь угодно мало отличаются от А.
y у = f(x)
A +ε
A 2ε
A – ε
0 х₀ - х₀ х₀ + x
Рис. 4.5
Число А — предел функции y=f(x) при х → а, если для любого положительного числа ε можно указать такое положительное число δ, зависящее от ε, что для всех х, удовлетворяющих неравенству 0 < |х - а| <δ, имеет место неравенство |f(x) — А| < ε.
Символическая запись: lim f(x) = A
x→a
Пример:
__________________________________________________________________________________
Предел функции у=х2 в точке х=2 равен 4. Записываем:
____________________________________________________________