Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Кузнецов Л. А / Кратные интегралы. Кузнецов. Вариант 20.pdf
Скачиваний:
48
Добавлен:
13.06.2014
Размер:
170.78 Кб
Скачать

Скачано с http://antigtu.ru

Задача Кузнецов Кратные интегралы 1-20

Изменить пределы интегрирования в двойном интеграле

ò1 dy ò0

 

f dx + ò0 dy ò0

f dx

 

 

antiGTU

2

(2+ y )

1

3

 

y

 

 

 

 

 

Имеем пределы интегрирования:

 

 

 

При -2 £ y £ -1Þ -(2 + y) £ x £ 0

 

 

 

При -1£ y £ 0 Þ 3

 

£ x £ 0

 

 

 

y

 

 

 

Имеем кривые x + y + 2 = 0 и y = x3

 

 

 

Строим данные кривые:

 

 

 

 

 

 

 

 

 

 

Скачано

с

 

 

 

 

 

 

Запишем с внешним интегрир ванием по y.

 

x3

1

0

 

0

 

0

 

 

0

 

ò dy

ò

 

f dx + ò dy ò

f dx = ò dx

 

ò fdy

2

(2+ y )

1

3

y

 

1

(2+x )

Задача Кузнецов Кр тные интегр лы 2-20

Вычислить двойной интеграл

òò(4xy +16x3 y3 )dxdy;

D

D : x = 1, y = x3 , y = −3x.

.

ru

Строим область D.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y = x3

 

 

 

 

.

 

ru

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y = − 3

x

 

òò(4xy + 16x3 y3 )dxdy =

1

 

3 x

 

 

 

 

 

 

 

 

1

 

 

 

 

2

 

 

 

 

4

3

 

 

ò dx ò

(4xy + 16x3 y3 )dy =

ò dx(4x × y

 

+ 16x3 ×

y

 

) x3

x

=

D

 

 

 

 

 

 

0

 

x3

 

 

 

 

 

 

 

 

0

 

 

 

2

 

 

 

4

 

 

 

 

1

 

2

 

 

 

 

4

 

 

1

 

 

 

5

 

 

 

 

 

13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 2x7 + 4x 3 - 4x15 )dx =

 

 

 

 

 

=

ò dx(2x(x 3 - x6 ) + 4x3 (x 3

- x12 )) = ò dx(2x3

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

x8

 

16

 

 

x16

1

3

 

1

 

3

 

1

 

3

 

1

 

2

 

 

 

 

 

 

 

 

 

x3

 

 

x 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

(2 ×

- 2 ×

+ 4 ×

 

-

4 ×

) =

-

+

-

=

-

=

=1

 

 

 

 

 

 

8

8

16

16

4

4

4

4

2

2

2

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

3

 

 

 

 

 

 

 

 

 

antiGTU

 

 

 

 

 

 

Задача Кузнецов Кратные интегралы 3-20

 

 

 

 

 

 

 

 

Вычислить.

 

 

 

 

 

 

 

 

с

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

òò3y2 sin xy

 

dxdy;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D : x = 0, y =

4

, y =

2 x.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Строим схематично область и

тегрирова ия.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Скачано

 

 

 

 

 

4 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

3 y

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

ru

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

2

 

 

3

 

 

 

xy

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

2

 

 

 

3

 

 

 

 

 

2 y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

òò3y2 sin

xy

 

dxdy = 3 ò3

y2dy

2ò sin

dx = 3

ò3

 

y2dy × (-

cos

xy

)

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

0

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

y

 

 

2

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

4

 

= -6 ò3

 

 

ydy(cos(

y

 

×

3 y) - cos0) = -6 ò3

 

y(cos

3y2 -1)dy = -6(

ò3

 

y cos

3y2 dy -

ò3

ydy) =

 

 

 

 

ò

 

 

 

0

ò

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

ò

 

 

4

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

4

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

antiGTUò

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3y

 

 

 

 

3y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

3y

 

 

1

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= -6(

ò

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- ò ydy) = -6(

 

 

 

-

 

2

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

y cos

 

4

 

d (

 

4

)

3 sin

4

 

2 y

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= -6(

2 sin(3

×

4 ) -

1

×

4 ) = -6(

2 sin - 2 ) = -6(

2

× 0 -

2 ) = -6(-

2 ) = 4

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

4

 

 

 

3

 

 

 

 

2

 

3

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

3

 

 

 

 

3

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

Задача Кузнецов Кратные интегралы 4-20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Вычислить.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

òòòx2 z sin xyz

 

 

dx dy dz;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ìx = 1, y = 4, z = ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V í

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

îx = 0, y = 0, z = 0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

òòòx2 z sin

xyz

 

 

 

dx dy dz = ò1

x2dxòzdzò4

 

sin

xyz

dy = ò1

x2dxòzdz × (-

2

cos

xyz

)

 

 

4

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

0

 

0

с

1

2

 

 

 

0

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

zx

 

2

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

x × 4 × z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

x2dx

 

 

zdz(-

(cos

- cos0) = -2

 

 

xdx

(cos2xz -1)dz =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xz

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= -2ò1

 

xdx × (

 

 

 

1

 

 

sin 2xz - z)

 

= -2ò1

xdx(

1

sin 2 x - ) = -2ò1

(1 sin 2 x - x)dx =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Скачано

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

2x

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

0

 

 

 

 

2x

 

 

 

 

 

 

 

 

 

 

 

 

 

0

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

x2 )

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

1 ) = -2(-

 

1

 

 

 

 

1 ) =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= -2(-

 

×

 

 

cos2 x -

 

= -2(-

 

cos2 -

 

 

 

 

-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

0

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

4

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

1

 

 

+

 

 

 

 

 

=

1 + 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача Кузнецов Кратные интегралы 5-20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Вычислить

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

òòòV

 

 

 

 

 

 

 

dx dy dz

 

 

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

æ

 

 

 

 

 

 

x

 

 

 

 

 

 

y

 

 

 

 

 

z

ö6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ç1+

 

 

 

 

 

+

 

 

 

 

+

 

 

 

÷

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

4

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

è

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ø

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V :

 

x

 

+

y

 

 

+

z

 

= 1,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x = 0, y = 0, z = 0.

V : 2x + 4y + 6z =1, - уравнение плоскости в отрезках.

Или в нормальном виде: 6x + 3y + 2z −12 = 0 Тогда интеграл запишется в виде:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6−3x

3 y

 

 

 

 

 

 

 

 

6−3x

3

y

 

 

òòò

 

 

dx dy dz

 

 

 

 

 

= ò2 dx

4−ò2 x dy

ò

2

 

dz

 

= ò2 dx4−ò2 x dy

ò

2

 

dz

=

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

6

26

 

 

V

 

æ

 

x

 

y

 

 

z

ö

 

 

 

 

 

 

 

 

 

 

1 + 1

 

 

 

 

antiGTU

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

0

 

 

0

(

)

 

 

0

 

0

 

0

 

 

 

 

 

 

 

 

ç1 +

2

+

4

 

+

6

÷

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

è

 

 

 

ø

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6−3x

3 y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

1

ò2 dx4−ò2 x dy ò

2

 

dz =

1

 

ò2 dx4−ò2 x (6 - 3x -

3

y)dy =

1

ò2 dx (6 y - 3xy -

3

y2 )

 

64

0

0

 

 

 

0

 

 

 

 

64

0

 

 

0

 

 

2

 

 

 

64

0

 

 

 

 

 

4

 

=

1

ò2 dx(6(4 - 2x) - 3x(4 - 2x) -

3 (4 - 2x)2 ) =

 

 

 

 

 

 

 

 

 

 

 

 

64

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

1

ò2 dx(24 -12x -12x + 6x2 -12 + 12x - 3x2 ) =

1

ò2

(12 -12x + 3x2 )dx =

 

64

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

64

0

 

 

 

 

 

 

 

 

 

 

1

(12x - 6x2

+ x3 )

2

1

 

 

 

 

 

 

 

 

8

 

= 1

 

 

 

 

 

 

 

 

 

 

 

=

=

(24 - 24 + 8) =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

64

 

 

 

 

 

 

 

 

 

 

 

 

 

0

64

 

 

 

 

 

 

 

64

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача Кузнецов Кратные интегралы 6-20

 

 

 

 

 

 

 

 

 

 

 

 

 

Найти площадь фигуры, ограниченной данными линиями.

 

 

 

 

 

 

 

y =

 

25

 

x2

 

 

 

 

 

 

y = x

5

 

 

 

 

 

с

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Строим данные линии.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Скачано

 

 

 

 

 

у

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Найдём абсциссы точек пересечения

4−2 x .

=

0

ru

х