
- •Часть 3. Типовые процессы и
- •Содержание
- •Введение
- •1 Общие положения
- •1.1 Цель обучения
- •1.2 Программа модуля «Тепловые процессы»
- •1.2.1 Роль тепловых процессов в химической технологии. Особенности тепловых процессов
- •1.2.2 Материал, изученный в предыдущем семестре
- •1.3 Объем модуля и виды учебных занятий
- •1.4 Перечень необходимых средств для выполнения
- •1.5 План-график изучения модуля «Тепловые процессы»
- •1.6 Планы практических занятий
- •Занятие №1
- •Занятие №2
- •Занятие №3
- •Занятие №4
- •1.7 Планы лабораторных занятий
- •1.8 Индивидуальное расчетное задание (ирз)
- •1.9 Самостоятельная работа студентов
- •1.10 Модульный экзамен
- •2 Тепловые процессы
- •2.1 Общие сведения
- •2.1.1 Тепловой баланс
- •2.1.2 Основное уравнение теплопередачи
- •2.1.3 Передача тепла теплопроводностью
- •2.1.4 Передача тепла конвекцией
- •2.1.5 Дифференциальное уравнение конвективного
- •2.1.6 Тепловое подобие
- •2.1.7 Теплоотдача без изменения агрегатного состояния
- •2.1.8 Теплоотдача при изменении агрегатного состояния
- •2.1.9 Теплопередача через плоскую стенку
- •2.1.10 Движущая сила теплообменных процессов
- •2.2 Промышленные способы подвода тепла
- •2.3 Конструкции теплообменных аппаратов
- •2.3.1 Кожухотрубные теплообменники
- •2.3.2 Теплообменники "труба в трубе"
- •2.3.3 Погружные трубчатые теплообменники
- •2.3.4 Оросительные теплообменники
- •2.3.5 Теплообменники с плоскими поверхностями нагрева
- •2.4 Конденсация
- •2.5 Типичные случаи теплообмена
- •2.6 Основные методы интенсификации теплообмена
- •3 Выпаривание
- •3.1 Общие сведения
- •3.1.1 Изменение свойств раствора при выпаривании
- •3.1.2 Методы выпаривания
- •3.1.3 Основные величины, характеризующие работу
- •3.1.4 Элементы расчета однокорпусной выпарной установки
- •3.2 Классификация выпарных аппаратов
- •3.3 Конструкции выпарных аппаратов
- •3.3.1 Выпарные аппараты с естественной циркуляцией раствора
- •3.3.2 Выпарные аппараты с принудительной циркуляцией раствора
- •3.3.3 Пленочные выпарные аппараты
- •3.3.4 Роторно-пленочные выпарные аппараты
- •3.3.5 Барботажные выпарные аппараты с погружными
- •Приложение а модульно-рейтинговая технология изучения курса пахт
- •Приложение б
- •Тестовые задания Тесты к занятию №1
- •Тесты к занятию №2
- •Тесты к занятию №3
- •Тесты к занятию №4
- •Приложение в
- •Варианты расчетного задания Задача 1
- •Задача 2
- •Приложение г
- •Основные термины и определения
- •Приложение д
- •Ведомость учета успеваемости студентов
- •Приложение е
- •Экспертно-обучающая программа для пэвм
- •Литература Основная
- •Дополнительная
2.5 Типичные случаи теплообмена
2.5.1 Теплообмен в рубашках реакционных аппаратов
Жидкость, находящаяся внутри аппарата, получает заданное количество тепла путем свободной конвекции или вынужденной при принудительном перемешивании мешалкой. При паровом обогреве пар, находящийся в рубашке, конденсируется на вертикальной поверхности, а при обогреве жидкостью происходит обтекание цилиндра.
2.5.2 Теплообмен в кожухотрубных теплообменниках
В трубном пространстве теплообменника происходит теплопередача при вынужденном переходном, ламинарном или турбулентном режимах; в межтрубном пространстве при паровом обогреве происходит конденсация на вертикальной поверхности или снаружи горизонтальных труб, а при жидкостном обогреве - продольное, поперечное или смешанное обтекание пучка труб.
2.5.3 Теплообмен в погружных теплообменниках
При паровом обогреве внутри труб происходит конденсация, а при жидкостном – вынужденное движение в различных режимах с повышением интенсивности теплоотдачи в змеевиках за счет поворотов потока. Снаружи труб происходит свободная конвекция или, при наличии мешалок, вынужденное обтекание труб.
2.6 Основные методы интенсификации теплообмена
К основным методам интенсификации теплообмена относятся:
а) уменьшение толщины теплового пограничного слоя в результате турбулизации за счет повышения скорости движения потоков или другого вида воздействия; это достигается, например, разбивкой пучка трубок на ходы и установкой межтрубных перегородок;
б) улучшение условий отвода неконденсирующихся газов или конденсата при паровом обогреве;
в) создание благоприятных условий для обтекания потоком поверхности нагрева, при которых она вся активно участвует в теплообмене;
г) обеспечение оптимальных значений температур, термических сопротивлений и т.д.
Интенсификация теплообмена является одним из основных направлений развития и совершенствования тепловой аппаратуры. При этом широко используются положительные эффекты в интенсификации теплообмена, обнаруженные и исследованные в других областях технологии и энергетики. Например, за последние годы выполнен ряд работ по промышленному испытанию активных ("режимных") методов интенсификации теплообмена в аппаратах производств, обусловливающих изменение гидродинамической обстановки, режимных характеристик течения (скорости, плотности, вязкости и т.д.) и вызывающих дополнительную турбулизацию потока. Кроме того, активные методы способствуют снижению накипеобразования и не требуют дополнительного расхода энергии.
В качестве активных методов используются:
а) вынужденные пульсации скорости и давления;
б) пленочное течение жидкости;
в) вдувание воздуха в поток нагреваемого продукта;
г) рациональное сочетание совместного действия нескольких факторов, интенсифицирующих процесс.
3 Выпаривание
3.1 Общие сведения
Выпариванием называется процесс сгущения практически нелетучих твердых веществ за счет испарения летучего растворителя. При этом частичное удаление растворителя из всего объема раствора осуществляется при температуре кипения последнего, когда давление паров растворителя равно давлению в надрастворном пространстве.
Особенностью процесса выпаривания является постоянство температур кипения при данном давлении и составе раствора. В ряде случаев выпаренный раствор подвергают последующей кристаллизации.
Тепло, необходимое для выпаривания, обычно подводится с насыщенным водяным паром, который называется греющим (первичным), через стенку, отделяющую теплоноситель от раствора. Вторичным называется пар, образующийся при выпаривании кипящего раствора.
Процессы выпаривания проводят в выпарных аппаратах под вакуумом, при повышенном и атмосферном давлениях в зависимости от свойств раствора и возможности использования тепла вторичного пара.
При выпаривании под вакуумом последний создается в аппарате путем конденсации вторичного пара в конденсаторе и отсасывания из него неконденсирующихся газов с помощью вакуум-насоса. Такой подход позволяет увеличить движущую силу теплопередачи (разность температур между греющим паром и раствором) и, как следствие, уменьшить площадь поверхности нагрева выпарного аппарата и тем самым его материалоемкость. Кроме того, выпаривание под вакуумом позволяет проводить процесс при более низких температурах, что особенно важно. Однако, применение вакуума вызывает удорожание выпарной установки в связи с дополнительными затратами на устройства для его создания (конденсаторы, ловушки, вакуум-насосы) и увеличение эксплуатационных расходов.
При выпаривании под избыточным давлением вторичный пар может быть использован как теплоноситель в подогревателях, для отопления теплиц и других внутризаводских нужд. Однако, такой метод выпаривания связан с повышением температуры кипения раствора. Поэтому его применение ограничено свойствами растворов, которые должны быть термически стойкими.
При выпаривании под атмосферным давлением образующийся вторичный пар не используется и обычно сбрасывается в атмосферу. Такой способ выпаривания наиболее прост, но наименее экономичен.
На рисунке 3.1 представлена структурно-логическая схема расчета процесса выпаривания.