
- •Часть 3. Типовые процессы и
- •Содержание
- •Введение
- •1 Общие положения
- •1.1 Цель обучения
- •1.2 Программа модуля «Тепловые процессы»
- •1.2.1 Роль тепловых процессов в химической технологии. Особенности тепловых процессов
- •1.2.2 Материал, изученный в предыдущем семестре
- •1.3 Объем модуля и виды учебных занятий
- •1.4 Перечень необходимых средств для выполнения
- •1.5 План-график изучения модуля «Тепловые процессы»
- •1.6 Планы практических занятий
- •Занятие №1
- •Занятие №2
- •Занятие №3
- •Занятие №4
- •1.7 Планы лабораторных занятий
- •1.8 Индивидуальное расчетное задание (ирз)
- •1.9 Самостоятельная работа студентов
- •1.10 Модульный экзамен
- •2 Тепловые процессы
- •2.1 Общие сведения
- •2.1.1 Тепловой баланс
- •2.1.2 Основное уравнение теплопередачи
- •2.1.3 Передача тепла теплопроводностью
- •2.1.4 Передача тепла конвекцией
- •2.1.5 Дифференциальное уравнение конвективного
- •2.1.6 Тепловое подобие
- •2.1.7 Теплоотдача без изменения агрегатного состояния
- •2.1.8 Теплоотдача при изменении агрегатного состояния
- •2.1.9 Теплопередача через плоскую стенку
- •2.1.10 Движущая сила теплообменных процессов
- •2.2 Промышленные способы подвода тепла
- •2.3 Конструкции теплообменных аппаратов
- •2.3.1 Кожухотрубные теплообменники
- •2.3.2 Теплообменники "труба в трубе"
- •2.3.3 Погружные трубчатые теплообменники
- •2.3.4 Оросительные теплообменники
- •2.3.5 Теплообменники с плоскими поверхностями нагрева
- •2.4 Конденсация
- •2.5 Типичные случаи теплообмена
- •2.6 Основные методы интенсификации теплообмена
- •3 Выпаривание
- •3.1 Общие сведения
- •3.1.1 Изменение свойств раствора при выпаривании
- •3.1.2 Методы выпаривания
- •3.1.3 Основные величины, характеризующие работу
- •3.1.4 Элементы расчета однокорпусной выпарной установки
- •3.2 Классификация выпарных аппаратов
- •3.3 Конструкции выпарных аппаратов
- •3.3.1 Выпарные аппараты с естественной циркуляцией раствора
- •3.3.2 Выпарные аппараты с принудительной циркуляцией раствора
- •3.3.3 Пленочные выпарные аппараты
- •3.3.4 Роторно-пленочные выпарные аппараты
- •3.3.5 Барботажные выпарные аппараты с погружными
- •Приложение а модульно-рейтинговая технология изучения курса пахт
- •Приложение б
- •Тестовые задания Тесты к занятию №1
- •Тесты к занятию №2
- •Тесты к занятию №3
- •Тесты к занятию №4
- •Приложение в
- •Варианты расчетного задания Задача 1
- •Задача 2
- •Приложение г
- •Основные термины и определения
- •Приложение д
- •Ведомость учета успеваемости студентов
- •Приложение е
- •Экспертно-обучающая программа для пэвм
- •Литература Основная
- •Дополнительная
2.3.2 Теплообменники "труба в трубе"
Такие теплообменники применяют при небольших расходах рабочих жидкостей и высоких давлениях. Они составляются из нескольких последовательно соединенных элементов, образованных двумя концентрически расположенными трубами (рисунок 2.9). Каждый элемент состоит из двух труб, вставленных одна в другую. Элементы соединены в батарею последовательно, параллельно или комбинированно. При этом трубы соединяются с трубами, а кольцевые пространства с кольцевыми пространствами. Достоинством таких теплообменников является соблюдение противотока, что обеспечивает наиболее полное использование теплоносителя.
1 – крышка; 2 –
корпус; 3 – U
- образные трубки Рисунок
2.8 – Схема
теплообменника
с
U-образными
трубками
1 – наружная труба;
2
– внутренняя труба;
3
- колено; 4 – патрубок Рисунок
2.9 – Теплообменник типа «труба в трубе»
Они позволяют достигать довольно высоких скоростей жидкости в диапазоне от 1 до 1,5 м/с, что уменьшает возможности отложения загрязнений на поверхности теплообмена и увеличивает значения коэффициентов теплоотдачи. Отметим, что эти теплообменники более громоздки, по сравнению с кожухотрубными, и требуют большего расхода металла на единицу поверхности теплообмена.
2.3.3 Погружные трубчатые теплообменники
Они имеют вид змеевика 1 (рисунок 2.10), погруженного в аппарат 2, заполненный жидкостью. Коэффициент теплопередачи в них невелик, т.к. жидкость снаружи змеевика движется только под действием свободной конвекции. Обычно и внутри трубок скорость движения рабочего тела невелика. Поэтому для интенсификации процесса необходимо применять мешалки, т.е. использовать вынужденную конвекцию. Обычно змеевики применяются там, где не требуется подводить большое количество тепла или в качестве дополнительной поверхности (наряду с рубашкой).
Рисунок 2.10 –
Погружной змеевиковый теплообменник
Рисунок 2.11 –
Оросительный теплообменник
2.3.4 Оросительные теплообменники
Такой теплообменник (рисунок 2.11) представляет собой трубу 2 с прямоугольными витками, соединенными коленами 3, закрепленными на стойке 4. Охлаждаемая жидкость вытекает из распределительного желоба 1 на наружную поверхность верхнего витка трубы и затем последовательно стекает на нижерасположенные и в сборный желоб 5. Жидкость, омывающая трубки, нагревается или охлаждается в зависимости от температуры среды, протекающей внутри. Недостатки оросительных теплообменников: громоздкость и неравномерность смачивания наружной поверхности труб. Как правило, они располагаются вне помещения. Теплообменники этого типа применяются в холодильной технике в качестве конденсаторов, работающих при высоких давлениях хладоагента для охлаждения жидкостей. Они работают при небольших тепловых нагрузках и имеют невысокие коэффициенты теплоотдачи.
2.3.5 Теплообменники с плоскими поверхностями нагрева
К этому типу относятся различные ребристые, пластинчатые и другие теплообменники. Оребрение поверхности производится с той стороны, где меньше значение коэффициента теплоотдачи. Это делается для создания большей поверхности контакта стенки с рабочей средой. Ребристый теплообменник для нагревания или охлаждения называется калорифером (рисунок 2.12). Он представляет собой две коробки 1, плоскости которых соединены рядом трубок 2, имеющих наружную ребристую поверхность.
1 - коробка; 2 - ребро; 3 – труба
Рисунок 2.12 – Секция калорифера
Через входной патрубок поступает вода (пар), которая заполняет коробки 1 и трубки 2. Через выходной патрубок вода (конденсат) отводится. Между ребрами трубок проходит воздух (газ), поток которого ограничен с боковых стенок калорифера плоскими листами. Калориферы могут соединяться в батареи параллельно или последовательно. Ребристые калориферы изготовляются различных размеров, они отличаются числом трубок, их длиной и т.д.
1 – крышка; 2 -
перегородка; 3,4 - металлические листы Рисунок
2.13 – Спиральный теплообменник
С
Скорость воздуха определяют в зависимости от его расчетного расхода и живого сечения межтрубного пространства (≈ 40%). Зная скорость воздуха и температуру теплоносителя, находят коэффициенты теплопередачи по графикам и номограммам для каждого типа калорифера. Эти графики обычно приводятся в каталогах калориферов [6]; там же указывается гидравлическое сопротивление, необходимое для расчета вентилятора.
Спиральные теплообменники состоят из двух спиральных каналов прямоугольного сечения, образованных металлическими листами (рисунок 2.13).
Внутренние концы спиралей соединены перегородкой. С торцов каналы закрыты крышками и уплотнены прокладками. У наружных концов каналов имеются патрубки для входа и выхода теплоносителей, два других патрубка приварены к плоским боковым крышкам.
1 – верхний несущий
брус; 2 – неподвижная плита; 3 - пластина;
4 – подвижная плита; 5 – нижний
несущий брус; 6 – направляющая стяжная
шпилька; 7 - стойка Рисунок
2.14 – Пластинчатый теплообменник
Такие теплообменники используются для теплообмена между жидкостями и газами. Эти теплообменники не забиваются твердыми частицами, взвешенными в теплоносителях, поэтому они применяются для теплообмена между жидкостями с взвешенными частицами. Спиральные теплообменники компактны, позволяют проводить процесс теплопередачи при высоких скоростях теплоносителей с высокими коэффициентами теплопередачи; гидравлическое сопротивление спиральных теплообменников ниже сопротивления многоходовых аппаратов при тех же скоростях теплоносителей.
Недостатком спиральных теплообменников является сложность изготовления, ремонта и чистки.
Пластинчатые теплообменники (рисунок 2.14) монтируются на раме, состоящей из верхнего и нижнего несущих брусов, которые соединяют стойку с неподвижной плитой. По направляющим стяжным шпилькам перемещается подвижная плита. Между подвижной и неподвижной плитами располагается пакет стальных штампованных гофрированных пластин, в которых имеются каналы для прохода теплоносителей. Уплотнение пластин достигается с помощью заглубленных прокладок, которые могут выдерживать высокие рабочие давления. Теплоносители к каналам, образованным пластинами, проходят по чередующимся каналам сквозь разделенные прокладками отверстия. Принцип действия пластинчатого теплообменника показан на рисунке 2.15. Как видно из этой схемы, теплообмен происходит в противотоке, причем каждый теплоноситель движется вдоль одной стороны пластины.
Рисунок 2.15 –
Принцип действия пластинчатого
теплообменника
Пластинчатые
теплообменники
используются в качестве
нагревателей,
холодильников,
а также комбинированных
теплообменников
для
Пластинчатые теплообменники компактны, обладают большой площадью поверхности теплопередачи, что достигается гофрированием пластин.
Высокая эффективность обусловлена высоким отношением площади поверхности теплопередачи к объему теплообменника за счет высоких скоростей теплоносителей, а также турбулизации потоков гофрированными поверхностями пластин и низкого термического сопротивления стенок пластин.
Эти теплообменники изготавливаются в виде модулей, из которых может быть собран теплообменник с площадью поверхности теплопередачи, необходимой для осуществления технологического процесса. К недостаткам относятся сложность изготовления, возможность забивания поверхностей пластин взвешенными в жидкости твердыми частицами.