
Экзамен / Экзамен по физике. ОГТУ. (3 семестр) / 2
.doc
82 p-n переход. При контакте двух полупроводников появляется контактная разность потенциалов. Тот у кого работа ввода вывода меньше будет отрицательным, тот у кого больше – положительным. Пусть есть два контактирующих полупроводника одной природы, но с разным типом проводимости. У этих полупроводников типы n и p. После контакта электроны переходят из n проводника в p. Дырки будут переходить из p проводника в n, так будет пока не сравняются уровни Ферми в этих полупроводниках. Получается соединение p и n.
При контакте получается двойной электронный слой. Будет слой отрицательного заряда, т.к. в проводнике n типа заряженные донорные примеси. Зависимость потенциала от координаты: В зоне перехода потенциал резко скачет т.к. разные заряды у n и p. Включим p-n переход в сеть: Запорное включение. Внешнее электрическое поле препятствует прохождению электрического тока. Для “n” – электроны внешним полем увлекаются от контакта., дырки тоже, следовательно, растет ширина запорного слоя, т. е. слоя, где концентрация носителей тока мала.Обычное включение. Ситуация обратная описанной выше, носителей тока в зоне контакта много, сопротивление мало.
Если менять приложенное напряжение и измерять силу тока, то с ростом напряжения при обратном включении сила тока стремится к I0. Для pn перехода зависимость I(U): I = I0 ( exp (eU/kT) – 1 ), где е – заряд электрона, k – постоянная Больцмана, T – температура перехода. U – приложенное напряжение. Применение p-n перехода: 1) Солнечные батареи. Если p-n переход облучать светом, то валентные e переходят в зону проводимости, дырки тоже, и если замкнуть цепь с p-n переходом, то возникает электрический ток. Энергия света преобразуется в электрическую. КПД ~ 15%.2) Фотодиод. Возьмем запорный p-n переход. Тогда I ~ I0. Если облучить светом место перехода, то концентрация носителей тока увеличивается, и возрастает проводимость перехода. Изменение силы тока пропорционально изменению интенсивности света. При помощи такой штуки можно следить за изменением интенсивности света.3) Светодиод. Есть прямой p-n переход. Электроны из n переходят в p проводники там рекомбинируются, и наоборот. Можно взять материал, излучающий при рекомбинации. Такой материал является светодиодом. У светодиодов КПД почти 100%.4) Термистор. Так как у p-n перехода сопротивление зависит от температуры, то можно контролировать температуру. Широко применяется как датчик переменного э/м поля. 5) Диод. Если включить p-n переход в сеть с переменным напряжением, то мы получим выпрямленное напряжение.6) Транзистор (полупроводниковый триод). Применяется для усиления переменных электрических сигналов. Транзистор состоит из двух p-n переходов.
Э – эмиттер, К – коллектор, Б – база. Под действием Uэ электроны пролетают из эмиттера в базу. Базу делают тонкой, чтобы электроны не успевали рекомбинировать с дырками. Iэ ~ Iк. Iэ = Uвк / Rвх. Iк = Uвых / Rвых. => Uвых ~ ( Rвых Uвх ) / Rвх. Выбирают сопростивление та, чтобы Rвых >> Rвх. Т. о. напряжение на выходе больше напряжение на входе => сигнал усиливается по амплитуде и мощности.
85Гетеропереход. Это контакт двух полупроводников разной природы. Достаточно сложны в изготовлении, т. к. надо вырастить монокристаллический слой одного полупроводника на поверхности другого. Не все материалы для этого подходят, т. к. для такой штуки у полупроводников должны быть похожие характеристики. Инжекция – переход неосновных носителей через межфазную границу. Можно чтобы n-n+ (оба n-типа, но в n+ концентрация носителей больше), и p-p+ (аналогично). Гетеропереходы используются в фотоэлементах в преобразованиях солнечной энергии. Делают так, чтобы гетеропереход разделял электроны и дырки. Плато – пластинка, у которой на поверхности нанесены полупроводниковые приборы. У этой штуки есть плотность, то есть колво деталей на единицу площади. На одном см ~ 105. Полупроводниковые приборы выгоднее вакуумных аналогов. Наноэлектроника – на основе нано-трубок, размером ~ 10-9.
5 В отраженном свете оптическая разность хода (с учетом потери полуволны при отражении), согласно (174.1), при условии, что показатель преломления воздуха n=1, а i=0, =2d+0/2, где d — ширина зазора. Из рис. 252 следует, что R2=(R-d)2+r2, где R — радиус кривизны линзы, r — радиус кривизны окружности, всем точкам которой соответствует одинаковый зазор d. Учитывая, что d мало, получим d = r2/(2R). Следовательно, = r2/R+0/2. (174.4) Приравняв (174.4) к условиям максимума (172.2) и минимума (172.3), получим выражения для радиуса m-го светлого кольца rm=((m-l/2)0R) (m=1, 2, 3,...)
и радиуса m-го темного кольца
Измеряя радиусы соответствующих колец, можно (зная радиус кривизны линзы R) определить 0 и, наоборот, по известной 0 найти радиус кривизны линзы R. Как для полос равного наклона, так и для полос равной толщины положение максимумов зависит от длины волны 0 (см. (174.2)). Поэтому система светлых и темных полос получается только при освещении монохроматическим светом. При наблюдении в белом свете получается совокупность смещенных друг относительно друга полос, образованных лучами разных длин волн, и интерференционная картина приобретает радужную окраску. Все рассуждения были проведены для отраженного света. Интерференцию можно наблюдать и в проходящем свете, причем в данном случае не наблюдается потери полуволны. Следовательно, оптическая разность хода для проходящего и отраженного света отличатся на 0/2, т. е. максимумам интерференции в отраженном свете соответствуют минимумы в проходящем, и наоборот.
16 Групповая скорость волн |
Результирующий момент многоэлектронного атома. Каждый электрон имеет орбитальный момент импульса Le и спиновый момент Ls. Суммируя все моменты, получаем результирующий момент атома Zs, зависящий от квантового числа. I = L + S; L + S -1; | L – S |. L – квантовое число. суммарного орбитального импульса. S – квантовое число суммарного спинового момента. Т. к. с орбитальным движением связан орбитальный магнитный момент, и если электрон обладает собственным магнитным моментом, то можно вычислить результирующий момент, как сумма этих элементов. Mz. Энергия атома зависит от Z вследствие взаимодействия орбитального и спинового моментов: при этом соответствующим терм атома, энергия которого зависит от J. Электронные свойства полупроводников. 1) Три основных дефекта кристаллической решетки. Из-за теплового хаотического движения 1 атом из решетки приобретает энергию достаточную, чтобы вылететь из узла в междоузлие – образуется пара: вакантный узел и атом междоузлия. 2) Если расстояние между ними велико, и взаимодействия между ними нет, то дефект называют дефектом по Френкелю. В равновесных условиях всегда есть некоторое число таких пар Френкеля. Закон Больцмана дает энергию, нужную для существования такого состояния.
3) Нет междоузельных атомов, они достраивают на поверхности кристаллическую решетку. Дефект Шоттки – дефект состояния лишь у валентных узлов. Число дефектов и валентных узлов.
1
11 Дифракция на дифракционной решетке Представляет
собой стеклянную пластину с царапинами,
которые рассеивают и пропускают свет
Схема
дифракционной решётки: d
6 ИНТЕФЕРОМЕТРЫ Все интерферометры основаны на одном и том же принципе и различаются лишь конструкционно. На рис. 255 представлена упрощенная схема интерферометра Майкельсона. Монохроматический свет от источника S падает под углом 45° на плоскопараллельную пластинку Р1. Сторона пластинки, удаленная от S, посеребренная и полупрозрачная, разделяет луч на две части: луч 1 (отражается от посеребренного слоя) и луч 2 (проходит через него).
Л Лучи 1' и 2' когерентны; следовательно, будет наблюдаться интерференция, результат которой зависит от оптической разности хода луча 1. от точки О до зеркала M1 и луча 2 от точки О до зеркала M2. При перемещении одного из зеркал на расстояние 0/4 разность хода обоих лучей увеличится на 0/2 и произойдет смена освещенности зрительного поля. Следовательно, по незначительному смещению интерференционной картины можно судить о малом перемещении одного из зеркал и использовать интерферометр Майкельсона для точного (порядка 10-7 м) измерения длин (измерения длины тел, длины световой волны, изменения длины тела при изменении температуры (интерференционный дилатометр)). Советский физик В. П. Линник (1889— 1984) использовал принцип действия интерферометра Майкельсона для создания микроинтерферометра (комбинация интерферометра и микроскопа), служащего для контроля чистоты обработки поверхности. Интерферометры — очень чувствительные оптические приборы, позволяющие определять незначительные изменения показателя преломления прозрачных тел (газов, жидких и твердых тел) в зависимости от давления, температуры, примесей и т. д. Такие интерферометры получили название интерференционных рефрактометров. На пути интерферирующих лучей располагаются две одинаковые кюветы длиной l, одна из которых заполнена, например, газом с известным (n0), а другая — с неизвестным (nx) показателями преломления. Возникшая между интерферирующими лучами дополнительная оптическая разность хода =(nx-n0)l. Изменение разности хода приведет к сдвигу интерференционных полос. Этот сдвиг можно характеризовать величиной m0=/=(nx-n0)l/, где то показывает, на какую часть ширины интерференционной полосы сместилась интерференционная картина. Измеряя величину то при известных l, n0 и , можно вычислить nx или изменение nx-n0. Например, при смещении интерференционной картины на 1/5 полосы при l=10 см и =0,5 мкм nx-n0=10-6, т. е. интерференционные рефрактометры позволяют измерять изменение показателя преломления с очень высокой точностью (до 1/1000000). Применение интерферометров очень многообразно. Кроме перечисленного, они применяются для изучения качества изготовления оптических деталей, измерения углов, исследования быстропротекающих процессов, происходящих в воздухе, обтекающем летательные аппараты, и т. д. Применяя интерферометр, Майкельсон впервые провел сравнение международного эталона метра с длиной стандартной световой волны. С помощью интерферометров исследовалось также распространение света в движущихся телах, что привело к фундаментальным изменениям представлений о пространстве и времени.
7 Интерференция многих волн к~0.05- коэф. отраж. Для наблюдения к~0.95 Фабри-Пьеро эталон. Геометрическая разность хода:
полупрозрачное
зеркало(к~0.95); при
В интерференц. многих волн и интерференц. двух волн выполняется з-н сохранения энергии.
8 Дифракция света Дифракция – огибание светом препятствий. Свет огибает припятствия и наблюдается интерферецион. картина на границе сред. Т-ия дифракции света Френеля. Качественная теория позволяющая рассчи-тывать дифракцию света через неоднородные среды. При рассм. дифракции света Френеля постулировал несколько утверждений (принципы Гюгенца-Френеля): 1.При рассм. распростр. света фронт волны можно рассм. как источник вторичных волн. 2.Вторичные волны когерентны и интерферируют между собой. 3.Мощности вторичного излучения равных по площади участков вторичной волны одинаковы.Чем больше угол α между направл. вторичного излуч. и вектором нормали к фронту волны , тем меньше мощность излучения и равна нулю при А=П/2. 4.Закрытыми непрозрачными телами участка фронта волны не излучают вторичных волн.
|
2 Методы наблюдения интерференции света. Явление можно наблюдать на мыльных пузырях. Методы заключаются в том, что: световую волну надо разбить на 2 части с помощью оптической системы и потом т.к. эти части проходят разные пути в пространстве совместить их. При этом каждый цуг волны разбивается на 2 части. Эти 2 половинки каждого цуга имеют одинаковую плоскость поляризации и одинаковую начальную фазу, они когерентны. Условие взаимного усиления света: Интерференц. max светаΔФ=Ф2-Ф1=2m. Интерференционный min светаΔФ=Ф2-Ф1=(2m+1). (где m=0,1,2…) Оптическая
система. Технический приём наблюдения
интерференции: Бипризма
Френеля:
Опыт Юнга:
3 Оптическая длина пути Пусть разделение на две когерентные волны происходит в определенной точке О. До точки М, в которой наблюдается интерференционная картина, одна волна в среде с показателем преломления n1 прошла путь s1, вторая — в среде с показателем преломления n2 — путь s2. Если в точке О фаза колебаний равна t, то в точке М первая волна возбудит колебание А1cos(t-s1/v1), вторая волна — колебание А2cos(t-s2/v2), где v1=с/n1, v2=с/n2 — соответственно фазовая скорость первой и второй волны. Разность фаз колебаний, возбуждаемых волнами в точке М, равна
(учли, что (/c=2v/c=2/0, где 0— длина волны в вакууме). Произведение геометрической длины s пути световой волны в данной среде на показатель n преломления этой среды называется оптической длиной пути L, а =L2-L1 — разность оптических длин проходимых волнами путей — называется оптической разностью хода. Если оптическая разность хода равна целому числу волн в вакууме =±mА0 (m=0, 1, 2,...), (172.2) то 6= ±2m и колебания, возбуждаемые в точке М обеими волнами, будут происходить в одинаковой фазе. Следовательно, (172.2) является условием интерференционного максимума. Если оптическая разность хода
4 Интерференция света в тонких пленках В природе часто можно наблюдать радужное окрашивание тонких пленок (масляные пленки на воде, мыльные пузыри, оксидные пленки на металлах), возникающее в результате интерференции света, отраженного двумя поверхностями пленки. Пусть на плоскопараллельную прозрачную пленку с показателем преломления n и толщиной d под углом i (рис. 249) падает плоская монохроматическая волна (для простоты рассмотрим один луч). На поверхности пленки в точке О луч разделится на два: частично отразится от верхней поверхности пленки, а частично преломится. Преломленный луч, дойдя до точки С, частично преломится в воздух (n0=1), а частично отразится и пойдет к точке В. Здесь он опять частично отразится (этот ход луча в дальнейшем из-за малой интенсивности не рассматриваем) и преломится, выходя в воздух под углом ('. Вышедшие из пленки лучи 1 и 2 когерентны, если оптическая разность их хода мала по сравнению с длиной когерентности падающей волны. Если на их пути поставить
собирающую линзу, то они сойдутся в одной из точек Р фокальной плоскости линзы и дадут интерференционную картину, которая определяется оптической разностью хода между интерферирующими лучами. Оптическая разность хода, возникающая между двумя интерферирующими лучами от точки О до плоскости АВ, =n(ОС+СВ)-(ОА±0/2), где показатель преломления окружающей пленку среды принят равным 1, а член ±0/2 обусловлен потерей полуволны при отражении света от границы раздела. Если n>n0, то потеря полуволны произойдет в точке О и вышеупомянутый член будет иметь знак минус, если же n<n0, то потеря полуволны произойдет в точке С и 0/2 будет иметь знак плюс. Согласно рис.249, OC=CB=d/cosr, ОA=ОВsini=2dtgrsini. Учитывая для данного случая закон преломления sini=nsinr, получим
С учетом потери полуволны для оптической разности хода получим
Для случая, изображенного на рис. 249 (n>n0),
В точке Р будет максимум, если (см.(172.2))
и минимум, если (см. (172.3))
Доказывается, что интерференция наблюдается только, если удвоенная толщина пластинки меньше длины когерентности падающей волны.
10
Дифракция
плоских волн на узкой щели
|