
- •Міністерство охорони здоров’я України Лебединське медичне училище імені проф.. М.І. Сітенка Основи біофізики та медичної апаратури
- •§1 Фізика та медицина
- •§ 1 .1 Опорно-рухова система людини
- •§1.2 Деформації тіл та їх характеристики
- •§ 1.3. Деформація біологічних тканин
- •4. Судинна тканина.
- •§2.1 Звукові хвилі
- •§ 2.2. Фізичні характеристики звуку
- •§2.3 Фізичні основи слуху
- •§ 2.4 Фізичні основи голосу
- •§2.5 Звукові методи діагностики
- •§ 2.6. Ультразвук та інфразвук
- •§ 2.7. Інфразвук
- •§ 2.8 Вібрація
- •§ 3.1. Внутрішнє тертя. Закон Ньютона
- •§ 3.2. Методи віскозиметрії
- •§3.3 Ламірна та турбулентна течія. Число Рейнольдса
- •§ 3.4 Основні закони гідродинаміки та їх застосування в медичній техніці
- •§ 3.5 Система кровообігу людини
- •§ 3.6 Основні гемодинамічні показники
- •§3.7 Пульсова хвиля
- •§4.1 Структура, властивості і функції мембран
- •§4.2 Транспорт речовин через мембрани
- •Пасивний транспорт речовин
- •Активний транспорт речовин
- •§4.3 Мембранні потенціали спокою і дії
- •§ 5.1 Основні характеристики електричного поля
- •§5.2 Елекричний диполь. Струмовий диполь
- •§ 5.3 Теорія Ейтховена. Фізичні основи екг
- •§ 6.1 Характеристики електричного струму. Закони Ома і Джоуля-Ленца
- •§6.2 Електропровідність тканин організму. Гальванізація. Електрофорез
- •§ 6.3 Імпульсний струм та його дія на організм
- •Ремезов рисунки електростимуляції 2.1112131415
- •§ 6.4 Змінний струм. Фізичні основи реографії
- •§ 6.5 Дія постійного та змінного електричного струму на біооб'єкти
- •§ 6.6 Магнітні властивості речовин. Магнітне поле.
- •§ 6.7 Магнітні властивості речовини
- •§ 6.8 Фізичні основи магнітобіології та магнітотерапії
- •§ 6.9 Методи лікування струмами високої частоти та механізм їх дії.
- •§ 7.1 Природа світла
- •§ 7.2 Оптичні методи дослідження біооб'єктів
- •2. Поглинання світла.
- •§7.4 Біофізика зору
- •§7.5 Оптична мікроскопія
- •§ 8.1 Характеристики теплового випромінювання
- •§8.2 Закони теплового випромінювання
- •§8.3 Застосування інфрачервоного випромінювання в медицині
- •§8.4 Ультрафіолетове випромінювання
- •§ 9.1 Елементи квантової механіки
- •§ 9.2 Люмінісценція
- •§ 9.3 Лазери та їх використання в медицині
- •§9.4 Елекронний парамагнітний резонанс
- •§ 9.5 Ядерний магнітний резонанс. Ямр-томографія
- •§10.1 Спектри рентгенівського випромінювання та його властивості
- •§10.2 Взаємодія х-випромінювання з речовиною
- •§10.3 Методи рентгенівської діагностики в терапії
- •§11.1 Закон радіоактивного розпаду
- •§11. 2 Активність. Одиниці активності
- •§11. 3 Види радіоактивного розпаду
- •§ 11.4 Види і основні властивості іонізуючого випромінювання
- •§ 11.5 Механізм взаємодії іонізуючого випромінення з речовиною
- •§ 11.6 Дозиметрія іонізуючого випромінення
- •§ 11.7 Біологічна дія іонізуючого випромінювання. Еквівалентна доза
- •§11.8 Методи дозиметричного радіаційного контролю
- •§ 11.9 Використання радіоактивного випромінювання в медицині
- •§ 12.1 Загальна класифікація медичної техніки
- •1. Класифікація медичних вп.
- •1.1. За призначенням:
- •1.3. За ступенем точності:
- •1.5. За принципом перетворення вимірюваного параметра в електричний сигнал:
- •§ 12.2 Променева діагностика
- •§ 12.3 Методи ультразвукової діагностики (узд)
- •§ 12.4 Термографія
- •§ 12.5 Ендоскопія
- •§ 12.6 Електрокардіографія
- •§ 12.7 Електроенцефалографія
- •§ 12.8 Електроміографія (емг)
- •§ 12.9 Основні прилади і апарати для клініко-діагностичних і біохімічних досліджень
- •§ 12.10Апаратура для електропунтурної діагностики
- •§ 12.11 Діагностична апаратура в офтальмології
- •§13.1 Фізіотерапевтична апаратура
- •§ 13.2 Гальванізація та лікувальний електрофорез
- •§ 13.3 Дарсонвалізація
- •§ 13.4 Електросон
- •§ 13.5 Діадинамотерапія
- •§ 13.6 Увч-терапія
- •§ 13.7 Індуктотермія
- •§ 13.8 Франклінізація
- •§ 13.9 Мікрохвильова терапія
- •§ 13. 10 Хвильова енергостабілізуюча терапія (хест)
- •§ 13.11 Ультразвукова терапія
- •§ 13.12 Світлолікування
- •§14.1 Спектрофотомери
- •§ 14.2 Фотоколориметри
- •§ 14.3 Рефрактометри
- •§ 14.4 Мікроскопія: методи, апаратура
- •§ 14.5 Правила техніки безпеки при роботі з електронною медичною апаратурою
§ 1.3. Деформація біологічних тканин
Як фізичний об'єкт біологічна тканина - композитний матеріал, механічні властивості якого відрізняються від механічних властивостей кожного компонента, взятого окремо. Ми розглянемо діаграми деформацій кісткової тканини, м'язів і судин. Методи визначення механічних властивостей біологічних тканин аналогічні методам визначення цих властивостей в технічних матеріалах.
Кісткова тканина.
Основними матеріалами кісткової тканини є гідроксил апатит ЗСаг(РО)2 -Са(ОН)2 і колаген. Перший з них є неорганічним матеріалом у формі мікроскопічних кристалів. Другий - високомолекулярний волокнистий еластичний білок. Кристалики гідроксилапатиту розташовуються між колагеновими волокнами. Така композитна будова кісток надає їм потрібних механічних властивостей: твердості, пружності і міцності. Вони значною мірою залежать від індивідуальних умов росту організму та його віку.
Діаграма розтягання кісткової тканини показана на рис.1.9. Як бачимо, при малих деформаціях виконується закон Гука. Модуль Юнга кісткової тканини Е =10ГПа , межа міцності — м = 100МПа.
109Н/м2
0,05 0,7
Рисунок 1.9
2.Шкіра
Шкіра складається із волокон колагену та еластину, розташованих в основній матриці. Еластин являє собою волокнистий високогнучкий та розтяжний білок. Він розтягується до 200-300 %, приблизно як гума. Колаген може розтягуватись на 10 %, що відповідає капроновому волокну. Модуль пружності колагену (10-100) МПа, еластину - (0,1-0,6) МПа. Границя міцності, відповідно, 100 МПа і 5 МПа. Отже, шкіра є пружним матеріалом з високоеластичними властивостями. Вона добре розтягується та скорочується.
3. М'язи.
До складу м'язів входить сполучна тканина, що складається з волокон колагену та еластину. Тому механічні властивості м'язів подібні до механічних властивостей полімерів. Між пружними властивостями полімерів і кристалічних мономерів існує принципова відмінність. В останніх сила пружності повністю визначається зміною міжатомних відстаней. Полімери складаються з дуже довгих і гнучких молекул. Частини молекул перебувають хаотичному тепловому русі, тому їх форма і довжина постійно змінюються. Під дією навантаження молекули випрямляються у відповідному напрямі, і довжина зразка зростає. В полімерах випрямлення молекул при навантаженні матеріалу та ковзання макромолекул триває значно довше, ніж повзучість в металах. В певній мірі процеси повзучості в полімерах аналогічні течії в'язкої рідини. Поєднання в'язкої плинності з високою еластичністю дозволяє називати деформацію, характерну для полімерів, в'язкопружною. Пружні та в'язкі властивості зручно моделювати.
Так, моделлю пружного тіла можна вибрати пружину, малі деформації якої відповідають закону Гука.
В'язкопружні властивості тіл моделюються системами, що складаються з різних комбінацій простих моделей „пружина" і „поршень".
Механічні властивості гладких м'язів описує модель Максвелла, в якій послідовно з'єднані пружний і в'язкий елемент.