Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
biofizika.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
4.47 Mб
Скачать

§ 1.3. Деформація біологічних тканин

Як фізичний об'єкт біологічна тканина - композитний матеріал, механічні властивості якого відрізняються від механічних властивостей кожного компонента, взятого окремо. Ми розглянемо діаграми деформацій кісткової тканини, м'язів і судин. Методи визначення механічних властивостей біологічних тканин аналогічні методам визначення цих властивостей в технічних матеріалах.

Кісткова тканина.

Основними матеріалами кісткової тканини є гідроксил апатит ЗСаг(РО)2 -Са(ОН)2 і колаген. Перший з них є неорганічним матеріалом у формі мікроскопічних кристалів. Другий - високомолекулярний волокнистий елас­тичний білок. Кристалики гідроксилапатиту розташовуються між колагеновими волокнами. Така композитна будова кісток надає їм потрібних механічних власти­востей: твердості, пружності і міцності. Вони значною мірою залежать від індиві­дуальних умов росту організму та його віку.

Діаграма розтягання кісткової тканини показана на рис.1.9. Як бачимо, при малих деформаціях виконується закон Гука. Модуль Юнга кісткової тканини Е =10ГПа , межа міцності — м = 100МПа.

109Н/м2

0,05 0,7

Рисунок 1.9

2.Шкіра

Шкіра складається із волокон колагену та еластину, розташованих в основній матриці. Еластин являє собою волокнистий високогнучкий та розтяжний білок. Він розтягується до 200-300 %, приблизно як гума. Колаген може розтягуватись на 10 %, що відповідає капроновому волокну. Модуль пружності колагену (10-100) МПа, еластину - (0,1-0,6) МПа. Границя міцності, відповідно, 100 МПа і 5 МПа. Отже, шкіра є пружним матеріалом з високоеластичними властивостями. Вона добре розтягується та скорочується.

3. М'язи.

До складу м'язів входить сполучна тканина, що складається з волокон колагену та еластину. Тому механічні властивості м'язів подібні до механічних властивостей полімерів. Між пружними властивостями полімерів і кристалічних мономерів існує принципова відмінність. В останніх сила пружності повністю виз­начається зміною міжатомних відстаней. Полімери складаються з дуже довгих і гнучких молекул. Частини молекул перебувають хаотичному тепловому русі, тому їх форма і довжина постійно змінюються. Під дією навантаження молекули вип­рямляються у відповідному напрямі, і довжина зразка зростає. В полімерах вип­рямлення молекул при навантаженні матеріалу та ковзання макромолекул триває значно довше, ніж повзучість в металах. В певній мірі процеси повзучості в полімерах аналогічні течії в'язкої рідини. Поєднання в'язкої плинності з високою елас­тичністю дозволяє називати деформацію, характерну для полімерів, в'язкопружною. Пружні та в'язкі властивості зручно моделювати.

Так, моделлю пружного тіла можна вибрати пружину, малі деформації якої відповідають закону Гука.

В'язкопружні властивості тіл моделюються системами, що складаються з різних комбінацій простих моделей „пружина" і „поршень".

Механічні властивості гладких м'язів описує модель Максвелла, в якій по­слідовно з'єднані пружний і в'язкий елемент.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]