
- •Міністерство охорони здоров’я України Лебединське медичне училище імені проф.. М.І. Сітенка Основи біофізики та медичної апаратури
- •§1 Фізика та медицина
- •§ 1 .1 Опорно-рухова система людини
- •§1.2 Деформації тіл та їх характеристики
- •§ 1.3. Деформація біологічних тканин
- •4. Судинна тканина.
- •§2.1 Звукові хвилі
- •§ 2.2. Фізичні характеристики звуку
- •§2.3 Фізичні основи слуху
- •§ 2.4 Фізичні основи голосу
- •§2.5 Звукові методи діагностики
- •§ 2.6. Ультразвук та інфразвук
- •§ 2.7. Інфразвук
- •§ 2.8 Вібрація
- •§ 3.1. Внутрішнє тертя. Закон Ньютона
- •§ 3.2. Методи віскозиметрії
- •§3.3 Ламірна та турбулентна течія. Число Рейнольдса
- •§ 3.4 Основні закони гідродинаміки та їх застосування в медичній техніці
- •§ 3.5 Система кровообігу людини
- •§ 3.6 Основні гемодинамічні показники
- •§3.7 Пульсова хвиля
- •§4.1 Структура, властивості і функції мембран
- •§4.2 Транспорт речовин через мембрани
- •Пасивний транспорт речовин
- •Активний транспорт речовин
- •§4.3 Мембранні потенціали спокою і дії
- •§ 5.1 Основні характеристики електричного поля
- •§5.2 Елекричний диполь. Струмовий диполь
- •§ 5.3 Теорія Ейтховена. Фізичні основи екг
- •§ 6.1 Характеристики електричного струму. Закони Ома і Джоуля-Ленца
- •§6.2 Електропровідність тканин організму. Гальванізація. Електрофорез
- •§ 6.3 Імпульсний струм та його дія на організм
- •Ремезов рисунки електростимуляції 2.1112131415
- •§ 6.4 Змінний струм. Фізичні основи реографії
- •§ 6.5 Дія постійного та змінного електричного струму на біооб'єкти
- •§ 6.6 Магнітні властивості речовин. Магнітне поле.
- •§ 6.7 Магнітні властивості речовини
- •§ 6.8 Фізичні основи магнітобіології та магнітотерапії
- •§ 6.9 Методи лікування струмами високої частоти та механізм їх дії.
- •§ 7.1 Природа світла
- •§ 7.2 Оптичні методи дослідження біооб'єктів
- •2. Поглинання світла.
- •§7.4 Біофізика зору
- •§7.5 Оптична мікроскопія
- •§ 8.1 Характеристики теплового випромінювання
- •§8.2 Закони теплового випромінювання
- •§8.3 Застосування інфрачервоного випромінювання в медицині
- •§8.4 Ультрафіолетове випромінювання
- •§ 9.1 Елементи квантової механіки
- •§ 9.2 Люмінісценція
- •§ 9.3 Лазери та їх використання в медицині
- •§9.4 Елекронний парамагнітний резонанс
- •§ 9.5 Ядерний магнітний резонанс. Ямр-томографія
- •§10.1 Спектри рентгенівського випромінювання та його властивості
- •§10.2 Взаємодія х-випромінювання з речовиною
- •§10.3 Методи рентгенівської діагностики в терапії
- •§11.1 Закон радіоактивного розпаду
- •§11. 2 Активність. Одиниці активності
- •§11. 3 Види радіоактивного розпаду
- •§ 11.4 Види і основні властивості іонізуючого випромінювання
- •§ 11.5 Механізм взаємодії іонізуючого випромінення з речовиною
- •§ 11.6 Дозиметрія іонізуючого випромінення
- •§ 11.7 Біологічна дія іонізуючого випромінювання. Еквівалентна доза
- •§11.8 Методи дозиметричного радіаційного контролю
- •§ 11.9 Використання радіоактивного випромінювання в медицині
- •§ 12.1 Загальна класифікація медичної техніки
- •1. Класифікація медичних вп.
- •1.1. За призначенням:
- •1.3. За ступенем точності:
- •1.5. За принципом перетворення вимірюваного параметра в електричний сигнал:
- •§ 12.2 Променева діагностика
- •§ 12.3 Методи ультразвукової діагностики (узд)
- •§ 12.4 Термографія
- •§ 12.5 Ендоскопія
- •§ 12.6 Електрокардіографія
- •§ 12.7 Електроенцефалографія
- •§ 12.8 Електроміографія (емг)
- •§ 12.9 Основні прилади і апарати для клініко-діагностичних і біохімічних досліджень
- •§ 12.10Апаратура для електропунтурної діагностики
- •§ 12.11 Діагностична апаратура в офтальмології
- •§13.1 Фізіотерапевтична апаратура
- •§ 13.2 Гальванізація та лікувальний електрофорез
- •§ 13.3 Дарсонвалізація
- •§ 13.4 Електросон
- •§ 13.5 Діадинамотерапія
- •§ 13.6 Увч-терапія
- •§ 13.7 Індуктотермія
- •§ 13.8 Франклінізація
- •§ 13.9 Мікрохвильова терапія
- •§ 13. 10 Хвильова енергостабілізуюча терапія (хест)
- •§ 13.11 Ультразвукова терапія
- •§ 13.12 Світлолікування
- •§14.1 Спектрофотомери
- •§ 14.2 Фотоколориметри
- •§ 14.3 Рефрактометри
- •§ 14.4 Мікроскопія: методи, апаратура
- •§ 14.5 Правила техніки безпеки при роботі з електронною медичною апаратурою
§ 7.1 Природа світла
Надзвичайно важливу роль у природі відіграють електромагнітні хвилі довжиною 760-380 нм. Цей вузький діапазон електромагнітних хвиль спричинює зорові відчуття у людини й становить численну групу світлових явищ. Розділ фізики, в якому розглядають світлові явища, називають оптикою, а світлові явища – оптичними.
У сучасних установках як джерело світла використовують лазер, а приймачем світла – фотоелемент. Це дало можливість виміряти швидкість світла з великою точністю:
с
300 000
3
108
м/с
Але знання швидкості світла ще не давало відповіді на основне питання: що таке світло, яка його природа? Перші наукові теорії про природу світла виникли в XVII ст. На думку Ньютона, світло являє собою потік якихось особливих частинок речовини — корпускул. Водночас із цим, голландський вчений Хрістіан Гюйгенс (1629—1695) висунув теорію ("Трактат про світло", 1690 р.), згідно з якою світло — це сукупність хвиль, які поширюються в особливому середовищі — ефірі. Але природа цих хвиль, як і середовища, в якому вони поширюються, була невідомою.
Тривалий час обидві теорії співіснували в науці як рівнозначні. І корпускулярна й хвильова теорії світла цілком задовільно пояснювали відомі на той час оптичні явища. Між прибічниками корпускулярної й хвильової теорії час від часу виникали наукові дискусії, але брак достатнього експериментального матеріалу не давав жодному з них істотної переваги.
Відкриття інтерференції та дифракції світла (початок XIX ст.) незаперечно свідчили, що світло поширюється у вигляді хвиль. Лише хвилі мають властивість огинати перешкоди на своєму шляху (дифракція) і при зустрічі або посилювати, або ослаблювати одна одну (інтерференція). Корпускули позбавлені таких властивостей. Корпускулярна теорія світла, як здавалося, зазнала "остаточного краху". Але питання про природу світлових хвиль лишалося нез'ясованим. Звісно, що це не могли бути звукові або механічні хвилі, а про інші хвилі в ті часи ще й гадки не мали.
Природа світлових хвиль дістала пояснення в другій половині XIX ст. Вирішальну роль у цьому відіграла електромагнітна теорія Максвелла й досліди Герца. З теорії Максвелла випливало, що в природі існують електромагнітні хвилі, які поширюються у вакуумі з такою самою швидкістю, як і світло. У дослідах Герца був переконливо засвідчений не лише сам факт існування електромагнітних хвиль, а й установлені їхні основні властивості. З'ясувалося, що електромагнітні хвилі відбиваються, заломлюються, огинають перешкоди на своєму шляху за тими самими законами, що й світло. Фізики, порівнюючи між собою властивості електромагнітних хвиль і світлових променів, після багатовікових суперечок, пошуків і помилок врешті-решт дійшли висновку, що світло — це сукупність електромагнітних хвиль, які спричинюють зорові відчуття в людини.
Зорові відчуття в людини спричинюють електромагнітні хвилі з частотою електромагнітних коливань від 3,8*1014до 7,5*1014Гц. Ці відчуття є кольоровими: електромагнітна хвиля певної частоти зумовлює зорове відчуття відповідного кольору.
Виходячи з цього, легко розрахувати, що світлові хвилі у вакуумі мають довжину від 380 (фіолетові промені) до 760 нм (червоні промені).
Світлові хвилі випромінюються атомами речовини. Тіла, атоми яких випромінюють світло в навколишній простір, називають джерелами світла. Усі джерела світла поділяються на природні й штучні. Головним природним джерелом світла в межах нашої планетної системи є Сонце. До природних джерел світла належать зорі й спалахи блискавки під час грози, мерехтливе світло полярного сяйва й холодне світло, випромінюване неорганічними сполуками та живими організмами.
Поява штучних джерел світла пов'язана з пізнавальною діяльністю людини. Вони удосконалювалися в міру опанування людиною законів природи: вогнище, свічка, гасова лампа, газовий ріжок тощо. Вивчення електричних та оптичних явищ зумовило створення принципово нових джерел світла: електричні лампи розжарювання, дугові лампи, газосвітні трубки, лампи денного світла і, нарешті, лазери.
Різні ділянки джерела світла випромінюють його неоднаково. Але якщо оцінювати дію джерела світла на значній відстані від нього, то ці відмінності практично зникають. Таке джерело світла, розмірами якого можна знехтувати порівняно з відстанню до нього, називають точковим джерелом світла.
Напрям, у якому поширюється світлова хвиля, називають світловим променем. Світлові промені — це лише графічний засіб зображення напряму поширення світлових хвиль. У природі, звісно, їх немає, реально існують лише світлові хвилі.
Розділ оптики, в якому вивчається розповсюдження світла називається геометричною оптико.
Закон геометричної оптики:
Прямолінійність розповсюдження світла в однорідному середовищі.
Незалежність розповсюдження світлових променів.
Відбивання світла від межі розділу двох середовищ. (рис.3.1) Відбивання може бути дзеркальним (рис 3.1, а) і розсіяним або дифузним ( рис.3.1,б).
Рисунок 3.1
Закони відбивання світла:
Кут відбивання β дорівнює куту падіння α.
α=β (7.1)
Падаючий і відбитий промені лежать в одній площині.
4.Заломлення світла – це явище проходження світла в друге середовище зі зміною напрямку ( рис3.2)
α
β n1
n2
α β n1
n2
γ
γ
Рисунок 3.2
Закони заломлення світла:
Синус кута падіння так відноситься до синуса кута заломлення, як швидкість світла в першому середовищі відноситься до швидкості світла в другому середовищі.
n2 - відносний показник заломлення другого середовища відносно першого;
n1 n2 - абсолютні показники заломлення: v1
n1
=
;
n2
=
;
v1 v2 – швидкості світла в середовищах 1 і 2 .
При переході світла з оптичного більш густого середовища в оптично менш густе середовище, можна спостерігати явище повного внутрішнього відбивання (рис. 3.3) , при якому світловий промінь повністю відбивається від межі обох прозорих середовищ (промінь4).
Рисунок 3.3
Кут
падіння
гр,
при якому кут заломлення
= 900,
називають граничним кутом повного
відбивання світла.