
- •Общий курс физики физические основы электромагнитных явлений
- •Предисловие
- •Глава 1. Электрическое поле
- •1.1. Исходные положения. Основные понятия и определения
- •1.2. Основной закон электростатики
- •1.3. Электростатическое поле. Напряженность поля
- •1.4. Циркуляция вектора напряженности электростатического поля. Потенциал поля
- •1.5. Связь между силовой и энергетической характеристиками электростатического поля
- •1.6. Теорема Гаусса для электростатического поля в вакууме
- •1.7. Диэлектрики в электростатическом поле. Теорема Гаусса для электростатического поля в диэлектрике
- •1.8. Проводники в электростатическом поле. Конденсаторы
- •1.9. Энергия электростатического поля
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Глава 2. Постоянный электрический ток
- •2.1. Электрический ток и его характеристики
- •2.2. Закон Ома в дифференциальной форме
- •2.3. Последовательное и параллельное соединение проводников. Электроизмерительные приборы
- •2.4. Работа и мощность тока. Закон Джоуля-Ленца
- •2.5. Закон Ома в интегральной форме
- •2.6. Расчет разветвленных цепей постоянного тока
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Глава 3. Магнитное поле
- •3.1. Магнитное поле и его характеристики
- •3.2. Закон Био-Савара-Лапласа
- •3.3. Магнитное поле движущегося заряда. Сила Лоренца
- •3.4. Проводник с током в магнитном поле. Закон Ампера
- •3.5. Циркуляция вектора индукции магнитного поля в вакууме
- •3.6. Теорема Гаусса для магнитного поля в вакууме
- •3.7. Магнитные свойства вещества
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Глава 4. Электромагнитная индукция
- •4.1. Закон электромагнитной индукции
- •4.2. Явление самоиндукции. Индуктивность контура
- •4.3. Взаимная индукция
- •4.4. Энергия магнитного поля
- •4.5. Практическое применение электромагнитной индукции
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Глава 5. Элементы теории электромагнитного поля
- •5.1. Вихревое электрическое поле
- •5.2. Ток смещения
- •5.3. Уравнения Максвелла для электромагнитного поля
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Некоторые знаменательные события в истории развития электродинамики
- •Элементы векторной алгебры
- •Библиографический список
- •Оглавление
- •Глава 1. Электрическое поле . . . . . . . . . . . . . . . . . . . . . . . . . 4
- •Глава 2. Постоянный электрический ток . . . . . . . . . . . 43
- •Глава 3. Магнитное поле . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
- •Глава 4. Электромагнитная индукция . . . . . . . . . . . . . . . 91
- •Глава 5. Элементы теории электромагнитного
- •Ан Александр Федорович
2.6. Расчет разветвленных цепей постоянного тока
Закон Ома в интегральной форме позволяет рассчитывать практически любую электрическую цепь. Однако непосредственный расчет разветвленных цепей, содержащих замкнутые контуры, достаточно сложен. Эта задача упрощается при использовании правил Кирхгофа (нем. физик, XIX в.).
Л
юбая
точка разветвленной электрической
цепи, в которой сходится не менее трех
проводников тока, называется узлом.
При этом ток, входящий в узел, считается
положительным, а ток, выходящий из узла
– отрицательным (рис. 2.9).
Первое правило Кирхгофа сформулировано для узла электрической цепи: алгебраическая сумма сил токов в узле электрической цепи равна нулю, т.е.
где n - число проводников, сходящихся в узле.
Таким образом, при указанных на рис. 2.9 направлениях токов в проводниках первое правило Кирхгофа запишется в виде
Первое правило Кирхгофа является следствием закона сохранения электрического заряда.
Второе правило Кирхгофа вытекает из закона Ома в интегральной форме для разветвленных цепей. Выделим в сложной электрической цепи замкнутый контур, состоящий из трех участков (рис. 2.10). Условимся обходить контур по часовой стрелке. Все токи, совпадающие по направлению с выбранным направлением обхода контура, считаются положительными. ЭДС источников считаются положительными, если они создают ток, направленный в сторону обхода контура. Применяя к отдельным участкам контура закон Ома, запишем:
Складывая почленно эти уравнения, получим:
Таким образом, второе правило Кирхгофа гласит: в любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС источников равна алгебраической сумме падений напряжений на отдельных участка этого контура, т.е.
где n – количество источников тока в контуре; m – число участков в контуре.
При расчете сложных цепей постоянного тока с применением правил Кирхгофа следует придерживаться следующих рекомендаций:
1. Произвольно выбирают направления токов в ветвях цепи. Действительные направления токов в схеме определяются после завершения расчетов: если искомый ток получился положительным, то его направление было выбрано правильно, если отрицательным – его истинное направление противоположно выбранному.
2. Выбирают направления
обхода замкнутых контуров цепи (по
часовой или против часовой стрелке).
Произведение
положительно, если ток на данном участке
совпадает по направлению с направлением
обхода; ЭДС, действующие по направлению
обхода, считаются положительными, против
направления обхода – отрицательными.
3. Составляют столько уравнений, чтобы их число было равно числу неизвестных токов, т.е. числу ветвей в схеме. По первому правилу Кирхгофа составляют n-1 уравнений, где n – число узлов в схеме. Остальные уравнения составляют по второму правилу Кирхгофа.
4. Для проверки расчетов составляют баланс мощности в цепи: алгебраическая сумма мощностей источников тока равна сумме мощностей, рассеиваемых в ветвях схемы, т.е.
где n- число источников тока в цепи; m – количество ветвей в схеме.