Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
kolobok_norfiz.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
484.26 Кб
Скачать

2.Особенности минерального обмена эмали. Процессы де- и реминерализации.

Первичная минерализация эмали

Первичная минерализация эмали представляет двухступенчатый процесс, включающий инициацию и последующий рост кристаллов (эпитаксию). Для роста кристаллов необходимы белки с небольшой мол. массой, а в составе секреторных гранул содержатся высокомолекулярные гликофосфопротеины, поэтому эти белки подвергаются ограниченному расщеплению протеолитическими ферментами - энамелизинами (ММП-20), калликреином и матриксными сериновыми протеиназами. Процесс протеолиза носит каскадный характер, что сопровождается образованием белков с разной мол. массой и различными функциями. Образующиеся в процессе гидролиза низкомолекулярные белки способны присоединять Ca2+ и PO43-.

К остаткам глутаминовой кислоты, аспарагина и фосфосерила присоединяются ионы кальция и фосфата. В процессе дальнейшей преципитации ионов формируется первичный кристалл гидроксиапатита.

Для образования кристаллов гидроксиапатита необходима высокая концентрация Ca2+. В транспорте Ca2+ участвуют кальций-связывающие белки. Наличие большого количества глутамата и аспартата в эмалевых низкомолекулярных белках и других протеинах минерализованных тканей позволяет присоединять Ca2+ непосредственно к карбоксильным группам этих аминокислот; Ca2+ также связывается с остатками фосфосерила. Присоединение кальция и фосфата к белкам эмали заканчивается формированием кристаллитов гидроксиапатита.

Вначале формируются длинные и тонкие кристаллиты, которые встраиваются в органический матрикс параллельно друг другу. В более позднем периоде кристаллиты утолщаются и превращаются в плоские шестиугольные призмы. Упорядоченное построение и форма кристаллов эмали отличается от бесформенных пластинчатых призм кристаллов кости и дентина. Уникальность эмалевых кристаллов обусловлена особенностью их формирования и роста. Рост кристаллов регулируется ионами Ca2+ и PO43 , которые транспортируются от амелобластического слоя в эмалевый матрикс. В свою очередь, поток жидкости, изменяющийся в течение развития эмали, регулирует эмалевый матрикс.

В регуляции роста кристалла в длину, ширину и толщину участвуют амелогенины, упакованные в наносферы (рисунок 4).

Амелогенины подвижны и не связываются с кристаллами. Считают, что присутствие глутаминовой кислоты в составе амелогенинов позволяет связывать молекулы H2O и Ca2+, тем самым способствуя формированию кристаллов. Предполагают, что амелогенины мигрируют по формирующейся эмали и по мере роста кристаллов вытесняются в сторону энамелобластов. Эмалевые белки обнаруживают во всех участках новообразованной эмали, но наибольшая их концентрация определяется в оболочке эмалевых призм. В формирующейся эмали также обнаружены остатки отростков амелобластов, содержащих небольшое количество глицерофосфолипидов, которое сохраняется в зрелой эмали.

Вторичная минерализация эмали

Созревание эмали сопровождается значительным снижением содержания органических компонентов. Почти 100-200-кратное снижение содержания белков при созревании сопровождается значительным изменением их аминокислотного состава. Происходит распад амелогенинов и задерживается деградация энамелинов, при этом энамелины прочно связываются с кристаллами апатита.

Образованная первичная эмаль является незрелой. Она состоит на 30% из органического матрикса и на 70% - из минеральных солей. Во вторичной минерализации участвуют энамелобласты стадии созревания, которые содержат большое количество кальций-связывающих белков. Через энамелобласты к эмали переносятся неорганические ионы и удаляются из созревающей эмали органические вещества и вода. Наружная поверхность эмали содержит меньше белков, чем её внутренняя часть. Белки и пептиды, расположенные снаружи, более растворимы в воде и участвуют в образовании поверхностного слоя эмали. После прорезывания зубов эмаль покрыта тонким слоем клеток (10 мкм), который быстро разрушается и сменяется органической кутикулой, образуемой белками слюны и продуктами эпителия слизистой.

Третичная минерализация эмали

Окончательная минерализация эмали происходит уже после прорезывания зуба, и особенно интенсивно - в течение первого года нахождения коронки зуба в полости рта. Часть неорганических веществ поступает со стороны дентина, но основное их количество поставляет слюна. В связи с этим для полноценной третичной минерализации очень важен минеральный состав и рН слюны.

Деминерализация и реминерализация эмали. В эмали постоянно идут два процесса - растворение кристаллов гидроксиапатита и их обра­зование, т.е. процессы де- и реминерализации. Они обеспечивают обновление и постоянство состава эмали. Деминерализация проис­ходит под действием органических кислот, а частичное или полное восстановление минеральных компонентов эмали происходит за счет электролитов ротовой жидкости. Реминерализация эмали возможна благодаря способности ГОА к ионному обмену. В естественных условиях источником ионов кальция и фосфора является ротовая жид­кость. В опыте «in vivo» было показано, что проницаемость эмали, нарушенная после воздействия молочной кислотой, под влиянием ротовой жидкости через 30 сек. полностью восстанавливается. Используя способность ГОА к ионному обмену, можно целенаправ­ленно влиять на состав эмали с помощью специальных минерали­зующих растворов. С этой целью в клинической практике используют 10% раствор глюконата кальция, 4% раствор фторида натрия, зубные пасты с ремодентом. Необходимо помнить, что минерализующие растворы не должны содержать высокие концентрации кальция и фтора, т.к. накапливаясь в поверхностных слоях эмали, эти ионы затрудняют дальнейшее их поступление вглубь эмали. Как уже го­ворилось ранее, в естественных условиях реминерализация эмали происходит с участием ротовой жидкости, основой которой является слюна. Необходимо попутно заметить, что следует различать эти две жидкости. Ротовая жидкость кроме суммарного секрета всех слюн­ных желез включает в себя клеточный детрит, микрофлору ротовой полости и продукты её жизнедеятельности, остатки пищевых продук­тов и содержимое десневых карманов.

Для процессов реминерализации имеет значение концентрация в слюне кальция, фосфора, кислотность и ионная сила слюны. Кальций в слюне находится как в ионизированном (5%), так и в связанном состоянии: с белками - 12%, с цитратом и фосфатом - 30%. Также кальций может связываться в слюне с амилазой, муцином и гликопротеидами.

В отношении солей кальция и фосфора слюна является перена­сыщенным раствором гидроксиапатита. Перенасыщенность слюны препятствует растворению эмали и способствует поступлению в эмаль ионов кальция и фосфора. С уменьшением рН степень пере­насыщения слюны снижается и её минерализующие действие пре­кращается. В норме рН слюны колеблется в широких пределах: от 6,0 до 8,0. Заметный деминерализующий эффект наблюдается при рН ниже 6,0. В кариозных полостях, в осадке слюны, в мягком зубном налете рН опускается ниже 4,0. Снижение рН происходит в результа­те кислотообразующей деятельности микрофлоры, активность кото­рой особенно велика в области спинки языка и контактных поверхно­стей зубов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]