
- •Местоположение и функции озонового слоя
- •Заключение
- •Список литературы
- •Фотохимическое образование озона в атмосфере и образование озонового слоя.
- •Волшебный щит планеты. Солнечный спектр
- •Местоположение и функции озонового слоя.
- •Значение озонового слоя
- •Причины ослабления озонового щита
- •Откуда взялась “дыра”
- •Механизмы образования озоновой дыры
- •Чем нам грозит “озоновая дыра”?
- •Заключение.
- •Список литературы.
Содержание
Введение
Фотохимическое образование озона в атмосфере и образование озонового слоя.
Волшебный щит планеты. Солнечный спектр
Местоположение и функции озонового слоя
Значение озонового слоя
Причины ослабления озонового щита
Откуда взялась “дыра”
Механизмы образования озоновой дыры
Чем нам грозит “озоновая дыра”?
Заключение
Список литературы
Введение
Современный мир отличается необычайной сложностью и противоречивостью
событий, он пронизан противоборствующими тенденциями, полон сложнейших
альтернатив, тревог и надежд.
Конец ХХ века характеризуется мощным рывком научно технического прогресса, ростом социальных противоречий, резким демографическим взрывом, ухудшением состояния окружающей человека природной среды.
Поистине, наша планета никогда раньше не подвергалась таким физическим и
политическим перегрузкам, какие она испытывает на рубеже ХХ –ХХI веков.
Человек никогда ранее не взимал с природы столько дани и не оказывался столь
уязвимым перед мощью, которую сам же и создал.
Что же несет нам век грядущий - новые проблемы или безоблачное будущее? Каким будет человечество через 150, 200 лет? Сможет ли человек своим разумом и волей спасти себя самого и нашу планету от нависших над ней многочисленных угроз?
Эти вопросы наверняка волнуют очень многих, но многие ли на нашей планете
всерьез задумывались над ними, или посвятили этому жизнь???
XX век принес человечеству немало благ, связанных с бурным развитием научно-технического прогресса, и в то же время поставил жизнь на Земле на грань экологической катастрофы. Рост населения, интенсификация добычи и выбросов, загрязняющих Землю, приводят к коренным изменениям в природе и отражаются на самом существовании человека. Часть из таких изменений чрезвычайно сильна и настолько широко распространена, что возникают глобальные экологические проблемы. Имеются серьезные проблемы загрязнения (атмосферы, вод, почв), кислотных дождей, радиационного поражения территории, а также утраты отдельных видов растений и живых организмов, оскудения биоресурсов, обезлесения и опустынивания территорий.
Проблемы возникают в результате такого взаимодействия природы и человека, при котором антропогенная нагрузка на территорию (ее определяют через техногенную нагрузку и плотность населения) превышает экологические возможности этой территории, обусловленные главным образом ее природно-ресурсным потенциалом и общей устойчивостью природных ландшафтов (комплексов, геосистем) к антропогенным воздействиям.
Фотохимическое образование озона в атмосфере и образование озонового слоя.
Озон является аллотропным видоизменением кислорода с трехатомной молекулой O3. Молекула озона не линейна и имеет структуру треугольника с тупым углом при вершине и равными межъядерными расстояниями (рис. 1).
Озон – одна из форм существования химического элемента кислорода в земной атмосфере. Последняя состоит в основном из азота и кислорода. В приземном воздухе, равно как и во всей атмосфере до высоты около 150 км, и азот, и кислород существуют практически только в форме молекул N2 и O2. Однако на всех высотах в атмосфере идут процессы диссоциации (т.е. разрушения молекул), приводящих к появлению атомов N и O. Эти процессы компенсируются быстрыми реакциями обратного соединения атомов в молекулы, поэтому концентрации атомов O и N ниже 100 км очень малы.
С увеличением высоты скорость процессов диссоциации растет, а обратных реакций падает, поэтому относительная концентрация атомарных компонентов увеличивается. Но лишь примерно со 100 км атомарный кислород становится одним из основных компонентов атмосферы, а на высоте около 150 км концентрации атомов и молекул кислорода сравниваются. На большой высоте кислород существует уже главным образом в виде атомов. Количество атомарного кислорода (хотя и очень малое) с увеличением высоты над поверхностью Земли растет. Это объясняет и рост с высотой количества молекул O3. Но с некоторого уровня разрушение молекул O3 солнечным излучением растет с высотой быстрее, чем их образование из атомов O, поэтому, начиная с этого уровня (так называемого максимума слоя озона) концентрация озона с высотой начинает уменьшаться.
Процесс образования озона можно записать в следующем виде:
Экзотермическая реакция
2О3 ® 3О2 +68 ккал (1)
Эндотермическая реакция
При образовании озона тепло поглощается, а при разложении – выделяется. При нормальной температуре и давлении реакция протекает крайне медленно. Связано это с той важной ролью, которую играет атомарный кислород в реакции образования озона. Итак, все начинается с диссоциации молекулы кислорода на два атома: O2 + hv ® O + O. (2)
Через hv здесь обозначен источник диссоциации. Чаще всего это ультрафиолетовое излучение Солнца, но могут быть и энергитичные частицы, входящие в состав космических лучей.
Образовавшиеся атомы кислорода либо соединяются вновь между собой в присутствии третьей молекулы М: O + O ® O2 + М, (3)
Либо взаимодействуют с молекулой O2 (также в присутствии третьего тела), образуя молекулу озона: О2 + О +М ® О3 + М, (4)
Где М – любая частица, необходимая для отвода энергии от образующейся молекулы озона. Для получения озона благоприятными является невысокие температуры и наличие дополнительного неравновесного количества атомарного кислорода. Источником последнего может служить диссоциация молекул кислорода под воздействием потока частиц, ультрафиолетового облучения.
Поскольку образование озона происходит главным образом в результате фотохимических реакций в стратосфере, здесь сосредоточена его основная масса (около 85 – 89% атмосферного озона).
Фотохимическая реакция, приводящая к образованию озона и состоящая из серии событий, начиная от поглощения света молекулой кислорода и, кончая образованием стабильных молекул, разделяется на первичные и вторичные процессы. Пороговые длины волн поглощаемого излучения, при которых происходит фотодиссоциация молекулярного кислорода, таковы:
O2 ® O(3P) + O(3P) – 2424A°, (5)
O2 ® O(3P) + O(1D) – 1750A°, (6)
O2 ® O(3P) + O(1S) – 1332A°. (7)
Таким образом, при облучении газообразного кислорода ультрафиолетовым излучением могут быть получены значительные концентрации атомарного кислорода, в результате облучения возникают возбужденные его молекулы. Все эти активные частицы вступают во вторичные реакции, аналогичные процессу (4), с образованием конечного продукта – озона.