
- •2 Устройство см. Принцип действия в генераторном и двигательном режимах. Реакции якоря см.
- •3 Синхронный генератор, схемы возбуждения, основные характеристики.
- •4. Синхронный двигатель, основные характеристики (угловая, u – образная, рабочие) и способы пуска синхронного двигателя.
- •Устройство коллекторной машины постоянного тока (мпт), принцип действия генератора и двигателя постоянного тока. Реакция якоря мпт
- •7. Что понимается под номинальной и типовой мощностями автотрансформатора? в чем сущность продольного и поперечного регулирования напряжения трансформаторов?
- •8. В чем заключаются особенности механического расчета шин?
- •9. Опорные и проходные изоляторы
- •12 Какое значение имеет масло в выключателях?
- •11.При каких условиях процесс восстановления напряжения на контактах выключателя имеет периодический характер? Зависит ли процесс восстановления напряжения от дугогасящего устройства?
- •Зависит ли процесс восстановления напряжения от дугогасящего устройства?
- •13 Воздушные выключатели
- •14 Предохранители
- •15.Сдвоенные реакторы
- •Типы трансформаторов напряжения могут быть применены для контроля изоляции в сетях с изолированной нейтралью и как они должны быть включены?
- •Вопрос 18 Элетр аппараты распредустройств
- •20. В чем заключаются особенности механического расчета одно- и многополосных шин?
- •Вопрос 21 Каковы основные электрические параметры разъединителей? Для чего служат вспомогательные контакты разъединителя?
- •22. Назначение и область применения разрядников? Достоинства и недостатки. Конструкционные особенности различных типов разрядников.
- •23. Физика возникновения внутренних и внешних перенапряжений в электрических сетях. Уровни внутренних и коммутационных перенапряжений в электрических сетях 0,4 - 10 кВ.
- •25. Способы и средства защиты электрооборудования от токов молнии. Защита электрооборудования подстанций от токов молнии. Защита зданий и сооружений от токов молнии.
- •27.Выбор электрических аппаратов и токоведущих частей: основные критерии выбора и условия проверки
- •28. Какие типы реле применяют в РзиА по принципу действия, назначению, времени действия.
- •29 Укажите на схеме область работы защиты в своей зоне и в зоне резервирования. Почему степень чувствительности защиты в резервной зоне меньше, чем в основной.
- •30. Как выбирается ток срабатывания отсечки на линии с односторонним питанием и как определить зону её действия?
- •31. В каких случаях надо применять максимально направленную защиту и как определяют время действия такой защиты в кольцевой сети с одним источником питания?
- •32 Какие устройства рз обеспечивают селективное отлючение Сети сложной конфигурации это сети с несколькими источниками питания ип и количеством потребителей больше трех.
- •33. Как отключается короткое замыкание на сборных шинах приемной подстанции, питаемой по двум параллельным линиям.
- •34. Как согласовать релейную защиту питающей высоковольтной линии с защитой предохранителями у трансформатора или отходящей линии?
- •35. Что такое мертвая зона реле направления мощности и как определить ее протяженность? Что такое каскадное действие защиты и в чем его недостаток?
- •36. Какую защиту применяют для батареи статических конденсаторов и как определяют ток срабатывания этой защиты?
- •37. Как достигается однократность действия устройства апв? Каковы условия допустимости несинхронного апв? в чём особенность схем устройства апв с контролем наличия синхронизма?
- •38. Перечислите устройства телемеханики по выполняемым ими функциям и расскажите о работе этих устройств. Какие способы телеизмерения вы знаете, чем они характеризуются?
- •39. Изложите требования к объёму телемеханизации (ти, ту, тс). От какого источника осуществляется питание устройств ту, тс, ти?
- •40. Какие требования предъявляются к схеме устройства авр трансформаторов, питающих разные секции шин, а также работающих параллельно, и как выполняются эти схемы?
- •41. Как определяют уставку времени устройства апв линии, питающей пс на ответвлении без выключателей, с отделителями?
- •42. Изобразить п - образную и т - образную схемы замещения линий с распределенными проводимостями и сопротивлениями ?
- •43. Какие сети называются замкнутыми? Приведите пример замкнутой сети. Дайте определение узловой точки (узла) и точки раздела мощностей (точки токораздела).
- •Узел нагрузки – пункт электрической системы (электрической сети), получающий электроэнергию от источников и распределяющая её дальше по сети или потребителям.
- •44 Классификация электроприёмников по току, напряжению, частоте, требования по бесперебойности электроснабжения.
- •45. Опишите компоновки цеховых трансформаторных подстанций. В чем преимущество комплектных подстанций(ктп)?
- •Вопрос 46
- •47. Каковы достоинства и недостатки радиальных и магистральных схем распределения электроэнергии? Где они применяются при напряжении выше 1000 в?
- •49 Какие 3 группы мероприятий по повышению коэффициента мощности вы знаете?
- •50. Что такое централизованное и местное регулирования напряжения? Как они определяются? Каковы их достоинства и недостатки?
- •51. Показатели качества электроэнергии. Их влияние на технико-экономические показатели систем электроснабжения промышленных предприятий.
- •Вопрос 53.
Устройство коллекторной машины постоянного тока (мпт), принцип действия генератора и двигателя постоянного тока. Реакция якоря мпт
Устройство: МПТ состоят из неподвижной части – статора и подвижной части – ротора (якоря). Статор состоит из металлической станины, внутри которой располагаются главные и дополнительные полюса. Ротор состоит из рабочего вала, на котором жестко при помощи шпонки крепится магнитопровод из листовой электротехнической стали. Якорь, несущий обмотку, в которой индуктируется ЭДС, представляет цилиндр, собранный с целью уменьшения потерь энергии от вихревых токов, из отдельных листов стали толщиной 0,5 мм и изолированных друг от друга лаком или тонкой бумагой. Обмотку якоря делают из медной изолированной проволоки из которой заранее изготовляют секции, обматывают их лентой, пропитывают изолирующими составами и после просушки укладывают в пазы якоря, соединяя их между собой и с коллекторными пластинами. Коллектор состоит из отдельных пластин из твердотянутой меди, изолированной друг от друга миканитом.
В режиме двигателя: при подаче на обмотку возбуждения U, по ней потечет Iвозб и в двигателе создается основное магнитное поле. Якорная обмотка также подключается к Uсети и по ней течет ток якоря. На проводник с током находящийся во внешнем магнитном поле действует сила Ампера. В результате этого создается вращающий момент и якорь двигателя поворачивается на какой то угол. В это время щетки перескакивают на соседние коллекторные пластины. Этот процесс называется коммутацией. Таким образом в обмотке якоря потечет переменный ток. Постоянный ток преобразует в переменный.
В режиме генератора: якорь вращается внешним двигателем и по закону электромагнитной индукции в обмотке якоря наводится ЭДС, но эта ЭДС будет переменной. Коллектор в данном случае выполняет роль выпрямителя.
Реакция якоря.
При работе МПТ с нагрузкой в ней на ряду с основным магнитным полем, созданным обмоткой возбуждения, появляется еще и поле, которое образуется проводниками обмотки якоря. Это магнитное поле называется полем якоря. Оно воздействует на основное магнитное поле машины, искажает его и меняет его величину. Такое воздействие поля якоря на основное полюсов называется реакцией якоря.
При отсутствии тока в якоре (в режиме х.х.) главные полюса создают основной магнитный поток Фо, магнитное поле полюсов симметрично относительно оси полюсов.
Если же машину нагрузить, то в обмотке якоря появится ток, который создаст в магнитной системе машины МДС якоря Fa. Допустим, что МДС возбуждения равна нулю и в машине действует лишь МДС якоря. Тогда магнитное поле, созданное этой МДС, будет направлено по линии щеток. Несмотря на то что якорь вращается, пространственное положение МДС обмотки якоря остается неизменным, так как направление этой МДС определяется положением щеток.
6. Какие параметры трансформаторов и автотрансформаторов указывают в паспорте или каталоге? Какой шаг принят или шкалы мощностей трансформаторов? Как определяется нормальный срок службы трансформатора, каков он?
1. Номинальный режим работы трансформатора работы трансформатора на основном ответвлении при номинальных значениях напряжения, частоты, нагрузки и номинальных условий места установки и охлаждающей среды
2. Типовая мощность трансформатора
3. Мощность обмотки трансформатора
4. Номинальная мощность обмотки трансформатора указанное на щитке трансформатора
5. Номинальная мощность двухобмоточного трансформатора
6. Номинальная мощность трехобмоточного трансформатора
7. Номинальная мощность автотрансформатора
8. Проходная мощность автотрансформатора
9. Номинальное напряжение обмотки трансформатора указанное на щитке напряжение между выводами трансформатора
10. Номинальное напряжение ответвления обмотки
11. Номинальный ток обмотки трансформатора
Шкала стандартных мощностей силовых трансформаторов
В нашей стране принята единая шкала мощностей трансформаторов. Выбор рациональной шкалы является одной из основных задач при оптимизации систем промышленного электроснабжения. На сегодняшний день существует две шкалы мощностей: с шагом 1,35 и с шагом 1,6. То есть первая шкала включает мощности: 100, 135, 180, 240, 320, 420, 560 кВА и т. д, а вторая включает 100, 160, 250, 400, 630, 1000 кВА и т. д. Трансформаторы первой шкалы мощностей в настоящее время не производятся и используются на уже существующих ТП, а для проектирования новых ТП применяется вторая шкала мощностей. Следует отметить, что шкала с коэффициентом 1,35 более выгодна с точки зрения загрузки трансформаторов. Например, при работе двух трансформаторов с коэффициентом загрузки 0,7 при отключении одного из них второй перегружается на 30 %. Такой режим работы соответствует требованиям условий работы трансформатора. Таким образом, его мощность может использоваться полностью. При допустимой перегрузке в 40 % появляется недоиспользование установленной мощности трансформаторов со шкалой 1,6.Срок службы определяется завод и составляет чаще всего 25 лет. Так же срок службы определяется по старению бумажной изоляции.