Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
молекулярна.doc
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
2.21 Mб
Скачать
    1. Внутренняя энергия и теплоемкость идеальных газов

В идеальном газе молекулы не взаимодействуют между собой, внутренняя энергия одного моля газа:

Uм = NA<ε> = i/2 NAkT = i/2 RT . Uм = i/2RT.

Если вспомнить, что по определению: Cv = δQ/dT = dU/dT, поскольку, δQ = dU+pdV, а для изохорного процесса dV = 0.

Тогда Cv = (i/2) R , а, учитывая, что Cр = Cv+R, получим:

Cр = (i+2)/2 R

Следовательно, коэффициент Пуассона γ = Cp/Cv = (i+2)/2 , таким образом, γ определяется числом и характером степеней свободы молекулы.

Согласно этой ф-ле для одноатомной молекулы i = 3 и γ = 1,67; жесткой двухатомной i =5 и γ = 1,4; упругой двухатомной i = 7, а γ = 1,29. В области температур, близких к комнатной, это хорошо согласуется с опытом. Однако, в широком температурном интервале это не так. Оказывается, что вращательная и колебательная энергии молекулы квантованы. При низких Т вращательные и колебательные степени свободы не возбуждены. Молекула Н2 , например, ведет себя как одноатомная в этой области температур, i = 3. В области Т ≈ 500К вращательные степени «разморожены» <ε> > εвращ и молекула Н2 ведет себя как жесткая двухатомная с = 3+2 = 5. При Т>1000К энергии <ε> достаточно для возбуждения колебательной степени свободы, «включены» все степени свободы, i = 7.

рис.9

3.7 Барометрическая формула

Атмосфера, то есть воздушная оболочка Земли, обязана своим существованиям наличию теплового движения молекул и силы притяжения их к Земле. При этом в атмосфере устанавливается вполне определенное распределение молекул по высоте. Соответственно этому, устанавливается определенный закон изменения давления воздуха с высотой, который нетрудно найти.

Возьмем вертикальный столб воздуха. Считаем, что при х=0, y поверхности Земли р=р0 , а на высоте х давление равно р. При изменении (увеличении) высоты на dx давление изменяется (уменьшается) на dp. Известно, что давление воздуха на некоторой высоте равно весу вертикального столба воздуха с площадью равной единице, находящегося над этой высотой. Поэтому, dp равно разности весов столбов воздуха с площадью s=1 м2 на высотах x и x+dx, то есть, равно весу столба воздуха высотой dx с площадью основания 1 м2:

p-dp-p= -dp= ρgdx, т. е., dp= -ρgdx, плотность ρ= m0N/V= m0n, (m0N = m – масса всех молекул).

Из молекулярной физики известно, p= nkT => n= p/kT => ρ= m0 p/kT

и тогда, подставляя значение плотности, получим: dp= (-m0g/kT)pdx. После разделения переменных: dp/p= (-m0g/kT)dx

Считая температуру постоянной на всех высотах (что не так) после интегрирования найдем:

lnp= (-m0g/kT)x +lnC , откуда: p= Ce(-m0g/kT)x . Постоянную C находим из начальных

условий х= 0 р= р0 то есть р0=C и тогда:

р= р0e(-m0g/kT)x

или с учетом m0= M/NA : р= р0e(-Mg/RT)x - барометрическая формула, т.е., давление с высотой убывает по экспоненциальному закону.

Для градуировки барометров необходимо внести поправки на Т. Так как, давление пропорционально концентрации молекул в единице объема, то: n= n0 e(-mg/kT)x - закон убывания концентрации молекул, а значит, плотности с высотой.

Видно, что атмосфера Земли в принципе, простирается до ∞. На больших высотах необходимо учесть, что g – меняется с высотой: g(r)= γM/(r+x)2 .

рис.10