Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
молекулярна.doc
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
2.21 Mб
Скачать

3.3 Число ударов молекул о стенку

Рассмотрим находящийся в равновесии газ, заключенный в некотором сосуде. Допустим, что молекулы газа движутся только вдоль трех взаимно ┴ направлений. Это можно допустить из-за хаотичности движения молекул. Если в сосуде находится N молекул, то в любой момент времени вдоль каждого из направлений будет двигаться N/3 молекул и половина из них - N/6 вдоль данного направления в одну сторону, а вторая половина - в другую. Следовательно, в интересующем нас направлении по нормали к данному элементу ΔS стенки сосуда движется N/6 молекул, а для единицы объема - , n – концентрация молекул.

Пусть все молекулы движутся с одинаковой средней скоростью <v>. За время Δt элемента стенки ΔS достигают все молекулы, находящиеся в параллелипипеде с площадью основания ΔS и длиной <v>Δt. Их число Δν = (n/6)ΔS<v>Δt, следовательно, число ударов о единичную площадку в единицу времени

Δν/ΔSΔt = (n/6)<v>.

Если отказаться от допущения, что все молекулы движутся с одинаковой скоростью v = <v>, то необходимо выделить в единице объема молекулы, скорости которых лежат в интервале от v до v+dv. Количество таких молекул, долетающих до площадки ΔS за время Δt равно dνv = (1/6)(dnvΔS

vmax

0

vΔt).

vmax

0

Полное число ударов:

Δν = v = 1/6ΔSΔt vdnv = Выражение vdnv по определению является средней скоростью молекулы, тогда Δν = 1/6ΔSΔtn<v> , т.е., получили то же самое значение числа ударов.

3.4 Давление газа на стенку сосуда

Давление по определению можно записать: , а поскольку, из второго закона Ньютона: , то . Значит, необходимо вычислить импульс , передаваемый всеми молекулами со всеми скоростями единице площади за единицу времени

Число молекул со скоростью v из общего количества n, долетающих до площадки ΔS за время Δt равно:

v = (1/6)(dnvΔSvΔt)

Далее, умножив это число на импульс, сообщаемый каждой молекулой при ударе равный – 2mv, получим импульс, сообщаемый площадке ΔS за время Δt этими молекулами. Изменение импульса одной молекулы равно (-2mv), значит, импульс передаваемый молекулой сте

vmax

0

нке равен +2mv.

vmax

0

Импульс, передаваемый всеми молекулами со всеми скоростями:

K = (1/6)(dnvΔSvΔt)2mv = 1/3ΔSΔtm v2dnv (*)

Выражение v2dnv представляет собой среднее значение квадрата скорости молекул, тогда, заменив в (*) интеграл и, разделив это выражение на ΔS и Δt, получим давление газа на стенку сосуда:

р = 1/3mn<v2>

т.к. m<v2>/2 = <εпост> по определению, получим:

р =2/3n<εпост>

- основное уравнение молекулярно- кинетической теории. Это уравнение раскрывает физический смысл макропараметра р: давление определяется средним значением кинетической энергии поступательного движения молекул.

3.5 Средняя энергия молекул

Из уравнения состояния идеального газа p=nkT и выражения для давления газа на стенку сосуда р =2/3n<εпост> следует, что

пост> = 3/2kT (1), откуда можно заключить, что температура есть величина, прямо пропорциональная средней энергии поступательного движения молекул.

Поступательно движутся молекулы газа. Молекулы твердых и жидких тел совершают колебания вблизи положений равновесия.

Из выражения (1) видно, что <εпост> зависит только от Т и не зависит от массы молекулы.

Т.к., <εпост> = <mv2/2> = m<v2>/2, то из сравнения с выражением (1), получим: <v2> = 3kT/m а средняя квадратичная скорость:

vср.кв. = √<v2> = √3kT/m .

Можно представить <v2> = <v2x>+<v2y>+<v2z> = 3<v2x>, поскольку, все направления движения молекул равноправны, т.е., <v2x> = <v2y> = <v2z>, тогда:

<v2x> = 1/3<v2> = kT/m

Формула (1) определяет энергию поступательного движения молекул. Наряду с этим движением возможны также вращение молекул и колебания атомов, входящих в состав молекул. Например, для двухатомной жесткой молекулы это вращение вокруг двух взаимно перпендикулярных осей, проходящих через центр масс молекулы. Эти виды движения также связаны с запасом энергии молекулы. Ее полную энергию позволяет определить, устанавливаемое статистической физикой, положение о равнораспределении энергии по степеням свободы молекулы. Такую гипотезу впервые высказал Больцман.

Числом степеней свободы механической системы называется количество независимых величин, с помощью которых может быть задано ее положение. Положение материальной точки определяется в пространстве значением трех координат, она имеет три степени свободы. Одноатомной молекуле следует приписывать три степени свободы, двухатомной: в зависимости от характера связи между атомами – либо три поступательных и две вращательных (жесткая связь), т.е. всего пять степеней; либо n = 3+2+1=6 с учетом колебательной степени свободы для нежесткой молекулы.

Поскольку ни одна из поступательных степеней свободы не имеет преимущества перед остальными, на каждую из них приходится в среднем одинаковая энергия 1/2kT. Согласно закону равнораспределения на каждую степень свободы молекулы приходится в среднем одинаковая энергия, равная 1/2kT. По этому закону среднее значение энергии одной молекулы <ε> будет тем больше, (при одинаковой Т), чем сложнее молекула и чем больше у нее степеней свободы. При определении <ε> необходимо учесть, что колебательная степень свободы должна обладать вдвое большей «энергетической емкостью» по сравнению с поступательной или вращательной. Это объясняется тем, что колебательное движение связано с наличием кинетической и потенциальной энергии, поэтому на колебательную степень приходится (1/2kT+1/2kT) = kT, т.е., одна половинка в виде εкин , а вторая - εпост.

Т.о. средняя энергия молекулы: <ε> = (i/2)(kT),

Где i- сумма поступательных, вращательных и удвоенного числа колебательных степеней свободы молекул.

i = nпост+nвращ+2nкол , здесь n – число степеней свободы.

Для молекул с жесткой связью i совпадает с числом степеней свободы.