
- •Молекулярная физика и термодинамика
- •1 Основные понятия и определения. Уравнение состояния идеального газа
- •1.1 Предмет и метод молекулярной физики и термодинамики Статистические и термодинамические методы исследования
- •1.2 Термодинамические системы. Термодинамические параметры и процессы
- •1.3. Температура
- •1.4 Уравнение состояния идеального газа
- •2 Первый закон термодинамики
- •2.1 Внутренняя энергия системы
- •2.2 Работа и теплота
- •2.3 Первый закон термодинамики
- •2.4 Работа при расширении или сжатии газа
- •2.5 Теплоемкость идеального газа
- •2.6 Изопроцессы идеального газа
- •Изохорный процесс, .
- •Изобарный процесс, .
- •Адиабатный процесс, .
- •Политропный процесс
- •3. Статистическая физика
- •3.1 Вероятность и средние значения величин
- •Характер теплового движения молекул
- •3.3 Число ударов молекул о стенку
- •3.4 Давление газа на стенку сосуда
- •3.5 Средняя энергия молекул
- •Внутренняя энергия и теплоемкость идеальных газов
- •3.7 Барометрическая формула
- •3.8 Распределение Больцмана
- •3.9 Функция распределения
- •3.1 Распределение Максвелла
- •3.11 Средние скорости молекул
- •4 Второй закон термодинамики
- •4.1 Обратимые и необратимые процессы
- •4.2 Круговые процессы.
- •4.3 Цикл Карно, теорема Карно, обратный цикл Карно
- •4.4 Энтропия
- •4.5 Принцип возрастания энтропии
- •4.6 Второй закон термодинамики
- •4.7 Статистический смысл II начала термодинамики
- •4.8 Энтропия и вероятность
Характер теплового движения молекул
Если газ находится в равновесии, его молекулы движутся совершенно хаотически. Все направления движения равновероятны, ни одному из них не может быть отдано предпочтение, из-за этого молекулы будут равномерно распределены по объему. Скорости молекул могут быть самыми различными по величине. При каждом соударении с другой молекулой скорость данной молекулы может, как возрасти, так и уменьшиться с равной вероятностью. Изменение v молекулы происходит случайным образом. Скорость молекулы не может быть равной бесконечности, а также равной 0. Следовательно, очень малые и очень большие скорости молекул по сравнению со средней скоростью <v> маловероятны; скорости молекул группируются в основном вблизи некоторого наиболее вероятного значения скорости.
Например, линейный размер молекулы кислорода 4 А, объем 10-23
см3 . При нормальных условиях на одну молекулу приходится объем 0,410-19
см3. Т.е., молекулы встречаются редко, проходя путь 1000 А между столкновениями. Т.к. скорость молекул велика, примерно 500 м/с, столкновения происходят через 10-10 с. Удары о стенки сосуда ничего не меняют, т.к. скорость изменяется только по направлению.
Молекулы притягиваются, когда расстояние между ними имеет порядок их размеров. Значит, большую часть пути они движутся прямолинейно и равномерно. Время взаимодействия очень мало 10-13 с, т.е., взаимодействие можно считать соударением. Большую часть «своей жизни» молекула проводит в свободном движении по инерции.
Хаотичность движения молекул наглядна, если взять сферу некоторого произвольного радиуса r с центром в т. О. Любая т. А на сфере определяет направление от О к А. След-но направление движ. мол. в нек. момент времени м.б. задан. точками на сфере. Равновероятность всех напр. приводит к тому, что точки, изображающие напр. движ. мол., распределяется по сфере с пост. плотностью, равной числу мол. N/4πr2. Соударения приводит к измен. направлений движ. мол., поэтому положение N точек на сфере неопред. меняются, однеко плотность точек из-за хаотичности движ. остается пост.
Можно найти какое кол-во мол. движется в напр., близких к данному (А). Таким напр. соответствуют все точки элемента пов. ΔS в окрестности т.А. В пределах ΔS будет
(*) ΔNA = N(ΔS/4πr2) = NΔΩ/4π ΔΩ тел угол, в кот. закл.напр.
Индекс А означает, что имеются ввиду мол. с направл. ≈ А. Направление ОА можно задать с помощью полярного угла θ и азимут угла φ отсчитываемых от напр. ОZ и плоск. Р0. Разделив dS/r2 получим элемент тел. угла, отвечающий инт. углов от θ до θ+dθ и от φ до φ+dφ
dΩ = sinθdθdφ
Две сферы с r и r+dr, два конуса с углами раствора θ и θ+dθ и две плоскости, образующие с Р0 углы φ и φ+dφ образуют в пр-ве прямоуг. параллелепипед с объемом
dV = dSdr = r2sinθdrdθdφ –
элемент объема в сферической сист. коорд. (объем, отвечающий приращению корд. r, θ, φ на dr, dθ, dφ)
Перейдя от дельт и диффер. в ф-ле (*) и подставив dΩ получим
dNv,φ = N(dΩvφ/4π) = Nsinθdθdφ/4π
Индексы указывают на то, что имеются в виду молекулы, напр. движ. которых отвечают интервалам углов от θ до θ+dθ и от φ до φ+dφ.