
- •1. Тексты лекций
- •Тема 1. Генетика – наука о наследственности и изменчивости.
- •Общие закономерности наследования признаков
- •Тема 2. Моногибридное скрещивание. Анализирующее скрещивание. Неполное доминирование. Множественный аллелизм
- •Тема 3. Дигибридное скрещивание. З-ий закон менделя
- •Тема 4. Полигенное наследование сложных признаков. Типы взаимодействие генов
- •Тема 5. Сцепленное наследование генов
- •Тема 6. Генетика пола
- •Тема 7. Генная и клеточная инженерия как основные направления биотехнологии
- •Свойства гена
- •Проект « Геном человека»
- •Определение хромосомной локализации генов
- •Тема 8. Геном человека
- •Основные отличия геномов разных видов
- •Тема 9. Организация генов. Сущность и основные свойства генетического кода
- •Свойства генетического кода
- •Тема 10. Организация генетического материала
- •Тема 11. Взаимодействие генотипа и среды при формировании признака. Модификационная изменчивость
- •Характеристика модификаций:
- •Тема 12. Наследственная изменчивость генетического материала
- •Комбинативная изменчивость
- •Мутационная изменчивость
- •Генные мутации
- •Генные (точковые) мутации
- •Хромосомные перестройки (аберрации)
- •Внутрихромосомные перестройки
- •Межхромосомные перестройки
- •Геномные мутации
- •Наиболее частые внешние признаки синдрома Дауна (Лазюк, 1991)
- •Тема13. Механизмы внеядерной наследственности
- •Геном митохондрий эукариотических организмов
- •Тема 15. Деление клеток. Стадии клеточного цикла
- •Типы деления клеток
- •Тема 16. Развитие зародыша человека
- •Оплодотворение и развитие
- •Тема 17. Значение генетики для медицины и здравоохранения
- •Цели, задачи и методы медико-генетического консультирования (мгк)
- •Современные методы пренатальной диагностики наследственных заболеваний
- •Определение альфа-фетопротеина
- •Ультразвуковое исследование (узи)
- •Амниоцентез
- •Кордоцентез
- •Фетоскопия
- •Вопросы для самоконтроля:
- •Тема 18. Дифференциальная активность генов
- •Тема 19. Закон гомологических рядов наследственной
- •Селекция микроорганизмов. Биотехнология. Традиционная селекция
- •Биотехнология. Новейшие методы селекции
- •Тема 20. Популяционная генетика Биологический вид: его критерии и структура. Популяция
- •Основное содержание и методические материалы:
- •Способы изоляции, препятствующие скрещиванию разных видов
- •Наследственность и изменчивость. Искусственный отбор
- •Основное содержание и методические материалы:
- •Борьба за существование
- •Основное содержание и методические материалы:
- •Естественный отбор и другие факторы эволюции
- •Приспособленность организмов и ее относительность
- •Основное учебное содержание и методические материалы:
- •Образование новых видов. Макроэволюция. Современная система органического мира
- •Основное учебное содержание и методические материалы:
- •Сравнительная характеристика растений разных классов
- •Эволюционное учение
- •Основное учебное содержание и методические материалы:
- •2. Материалы для проведения лабораторных работ
- •Тема 1. Заслуги г. Менделя. Моногибридное скрещивание. 1,2 законы. Анализирующее скрещивание. Неполное доминирование
- •Познакомить с историей возникновения генетики как науки, заслугами г.Менделя, его гибридологическим методом исследования, с основными генетическими понятиями и терминами.
- •Женский организм - «зеркало Венеры»,
- •Тема 2. Менделирующие признаки человека
- •Самостоятельная работа «Создай лицо ребенка»
- •Ход работы:
- •Цвет волос
- •Тема 3. Дигибридное скрещивание. З-й закон менделя. Отработка практических навыков по решению задач
- •I. Определение генотипа родителей по фенотипу потомков
- •II. Множественный аллелизм
- •III. Дигибридное скрещивание
- •IV. Полигибридное скрещивание
- •Тема 4. Типы взаимодействия генов, определяющих сложные признаки
- •Убедить в том, что взаимодействие двух или нескольких генов может привести к новообразованию (формированию нового свойства признака). Ход работы:
- •I. Комплементарность (или кооперация)
- •Р. АаВв х Аавв гаметы: аВ____ Ав
- •I. Эпистаз
- •III. Полимерия
- •Кумулятивная полимерия
- •Некумулятивная полимерия
- •IV. Модифицирующее действие генов
- •Тема 5. Множественное действие гена (плейотропия). Наследование летальных генов
- •I. Плейотропное действие гена
- •II. Наследование летальных генов при моногибридном скрещивании
- •III. Летальные гены при дигибридном скрещивании
- •Тема 6. Использование критерия хи–квадрат
- •Решение задач с применением хи–квадрата
- •Тема 7. Модельные объекты генетического анализа
- •I. Общая характеристика модельных объектов
- •II.Изучение стадий развития и строения тела плодовой мушки
- •Тема 8. Мутации мушки дрозофилы
- •I. Мутация глаз
- •II. Мутации крыла
- •III. Мутации щетинок
- •IV. Мутации, связанные с пигментацией тела
- •Тесты на сцепленные с полом рецессивные летальные мутации у дрозофилы
- •Тема 9. Сцепленное наследование генов
- •Задача 1.
- •Выяснение генотипов особей и определение вероятности рождения потомства с анализируемыми признаками
- •Тема 10. Наследование генов, локализованных в половых хромосомах Наследование летальных генов
- •Наследование, сцепленное с полом
- •Задачи на совместное наследование сцепленных генов и генов негомологичных хромосом
- •Полное и неполное сцепление генов
- •Тема 11. Молекулярная генетика
- •Образцы решения задач:
- •Тема 12. Генеалогический метод составления родословных
- •Аудиторная работа
- •Оценка генеалогического анамнеза (га)
- •Основные цели исследования:
- •Примеры оценки генеалогического анамнеза
- •Тема 13. Популяционно-статистический метод
- •Панмиктическая популяция и ее характеристики
- •Аудиторная работа:
- •Тема 14. Дерматоглифика – как один из методов медицинской генетики
- •Практическая часть работы: Проведение дактилоскопического и пальмоскопического анализа
- •Пальмоскопия
- •Наследственные заболевания, при которых выявляется чпл:
- •Тема 15. Цитогенетический метод
- •Лабораторная работа: Применение кариотипирования
- •1. Анализ фотокариограммы здорового человека
- •2. Анализ фотокариограммы больных с хромосомными нарушениями
- •Тема 16. Иммуногенетика. Система групп крови аво
- •Система групп крови ав0
- •Распространение аллелей групп крови аво в различных странах мира (%)
- •Резус-фактор
- •Тема 17. Биохимический скрининг болезней обмена веществ
- •1. Наследственные болезни обмена аминокислот:
- •2. Наследственные болезни углеводного обмена
- •3. Наследственные болезни обмена липидов (липидозы сыворотки крови)
- •4.Наследственные болезни пуринового и пиримидинового обмена
- •5. Наследственные болезни обмена металлов
- •6. Наследственные болезни соединительной ткани
- •Тема 18. Близнецовый метод медицинской генетики
- •Тема 20. Методы вариационной статистики
- •I. Группировка данных
- •Рекомендуемое число классов вариационного ряда в зависимости от объема выборки
- •Построение вариационного ряда преследует две цели:
- •II. Статистические сравнения
- •Критерий хи-квадрат
- •Вычисление критерия х2 (хи-квадрат)
- •Стандартные значения х2
- •Вариант тестирования на знание исторических дат, связанных с выдающимися событиями в области генетики:
- •Часть I. Закономерности микроэволюции
- •Понятие вида в современной биологии
- •Современная биология полагает вид как основную таксономическую категорию в биологической систематике.
- •Различия между видами получили название критериев. В современной систематике выделяют следующие критерии:
- •Популяционная структура вида
- •Я щерицы одного вида
- •1Подвид 2подвид
- •Механизмы репродуктивной изоляции
- •Современная концепция политипическоо вида
- •Литература: Основная
- •Дополнительная
Наиболее частые внешние признаки синдрома Дауна (Лазюк, 1991)
-
Пораженная система
Относительная частота пороков
абс.число
%
Мозговой череп и лицо
441/449
98,3
Брахицефалия
364
81,1
Монголоидный разрез
358
79,8
Эпикант
231
51,4
Плоская спинка носа
296
65,9
Узкое небо
264
58,8
Деформированные ушные раковины
194
43,2
Костно-мышечная система
360/449
80,0
Короткие и широкие кисти
288
64,4
Клинодактилия мизинца
253
56,3
Деформация грудной клетки («куриная» или «воронкообразная»)
121
26,9
Глаза
313/434
72,1
Пятна Брушфильда
297
68,4
Помутнение хрусталика
169
32,2
Случаи единичной патологии, когда анализ родословной не дает указаний на семейный характер болезни. Возможными причинами таких патологий могут быть:
генные или хромосомные мутации, возникшие в одной из гамет родителей или на ранних стадиях развития плода;
выщепление редкого рецессивного гена вследствие гетерозиготности обоих родителей;
сбалансированная транслокация в генотипе одного из родителей;
инфекционные болезни у женщины в период беременности.
Генетический риск оценивают двумя путями: теоретические расчеты, основанные на законах генетики, и на основании эмпирических данных.
Степень риска выражается в процентах. В настоящее время считается, что если этот процент составляет 0-10% — это низкий риск, от 11 до 20% — средний и более 21% — высокий. Заключение врача-генетика должно быть объективным, так как необоснованный благоприятный совет может обернуться тяжелой психологической травмой после рождения больного ребенка.
Тема13. Механизмы внеядерной наследственности
Многочисленные эксперименты, начиная с Т. Бовери, доказывали исключительную роль ядра в передаче наследственной информации. До сих пор мы все время говорили об исключительной роли ядерного генетического материала (о генах, локализованных в локусах хромосом ядра) в плане передачи и реализации наследственных признаков.
Но кроме ядра, в общей структуре клетки, достаточно большой объем занимает цитоплазма. Возник вопрос – могут ли какие-либо компоненты цитоплазмы, так или иначе, участвовать в передаче определенных наследственных признаков потомству?
Внимание генетиков привлекли пестролистные растения. Вы сами неоднократно сталкивались с явлением, когда листья традесканции могут иметь сплошную зеленую окраску, а могут быть с белыми полосками; листья хлорофитума хохлатого, листья плюща, львиного зева – у этих растений наряду с расами, имеющими зеленые листья, существуют расы пестролистности.
В 1908-1909 гг. К.Корренс стал изучать это явление у растения ночная красавица. В этом случае также наблюдаются: зеленые растения; пестролистные, причем, пестролистные формы могут давать побеги абсолютно белые, лишенные хлорофилла. Корренс осуществлял искусственное перекрестное опыление во всех вариантах, меняя материнские и отцовские формы, с которых бралась пыльца, по окраске листьев.
Цветки бесхлорофилльных побегов, в любых вариантах, давали семена, из которых в F1 вырастали бесхлорофилльные проростки. Все они вскоре гибли. Т. к. не способны к фотосинтезу.
Цветки нормального зеленого растения, не зависимо от формы, с которой бралась пыльца, продуцировали семена нормальных зеленых потомков.
Пестролистные формы у потомства F1 могли давать расщепление: пестролистные формы; зеленые побеги; белые побеги.
Обобщая результаты опытов, Корренс пишет научную статью, где заключает: окраска новых дочерних растений у ночной красавицы определяется исключительно характером материнского растения. По всей видимости, цитоплазма вместе с красящими пигментами, привносится в зиготу только от материнской формы. Такая передача фенотипического признака была названа материнским типом наследования.
Однако, сам собой возник вопрос: почему у пестролистного растения листья достаточно сильно варьируют по площади, конфигурации белых линий и пятен? Возникает мозаика из нормальных зеленых и белых частей листа?
Примечание: Позже, продолжая изучать явление пестролистности у растений, генетики обнаружили виды, которые являются исключением из общего правила. Так, например, у герани в передачи пластид участвует и материнская и отцовская гаметы. А у такого растения как кипрей пластиды цитоплазмы вносятся в зиготу не яйцеклеткой, а спермием. Окраска листьев наследуется по отцовскому типу.
Исследования показали, что в цитоплазме высших растений присутствуют хлоропласты – пластиды, которые после ядра являются наиболее крупными органеллами цитоплазмы. Хлоропласты содержат свою кольцевую ДНК, которая обеспечивает синтез некоторых белков и РНК, отвечающих за ряд признаков.
Мутации ДНК некоторых хлоропластов могут привести к тому, что хлоропласты утрачивают зеленую окраску. Когда отдельно взятая клетка листа хлоропластов делится на 2 дочерние митозом, распределение хлоропластов по дочерним клеткам происходит случайно. В дочерних клетках могут оказаться:
о
крашенные не
обязательно в равном количестве. Именно
по этой
бесцветные причине окраска листьев пестролистного растения может
и те, и другие варьировать.
При половом размножении пестролистное растение (ночная красавица, львиный зев) может образоваться 3 вида яйцеклеток, различных по содержанию хлоропластов. Мужские клетки содержат слишком мало цитоплазмы, поэтому наследование, в основном идет по материнской линии.
Если яйцеклетка содержала бесцветные хлоропласты, то из зиготы будет развиваться неокрашенное растение, израсходовав запас питательных веществ, оно погибнет.
Если яйцеклетка содержала только зеленые хлоропласты – разовьется нормальное зеленое растение. Если в яйцеклетку попали и зеленые и бесцветные хлоропласты, то растение будет пестролистным.
Оплодотворенная яйцеклетка (зигота) развивается только за счет цитоплазмы яйца, сперматозоид вносит в зиготу только свою половину ядерного хромосомного набора (геном+геном=генотип). Цитоплазма, митохондрии и другие органоиды в основном остаются в хвосте сперматозоида. Такой тип оплодотворения называется гетерогамией. Следует помнить, что неравенство сливающихся гамет касается только объема цитоплазмы, ядерный материал поступает от ♀ и ♂ в равном соотношении.
Неравенство гамет по цитоплазме еще более заострил вопрос о выяснении роли ядра и цитоплазмы в детерминации признаков потомка.
В растительных клетках пластиды относятся к полуавтономным самовоспроизводящимся органеллам клетки, так как содержат собственную ДНК. Молекула хлоропластной ДНК в отличие от ядерных, имеет другую форму – она кольцевая. Сильно отличается и ее плотность – она намного меньше плотности ДНК ядра. Хлоропласты обладают своей собственной системой синтеза белка (с участием: т-РНК, р-РНК). Однако этот синтез существенно отличается от основной системы синтеза белка в цитоплазме с участием информационной – РНК, синтезированной в ядре.
Вместе с тем, работа генов, локализованных в ДНК-хлоропластов, соподчинена с работой генов ядерной ДНК, прежде всего это касается фотосинтетических процессов, процессов очень важных для жизнедеятельности растения органические вещества. Генетические функции, необходимые для фотосинтеза, частично закодированы в ДНК хлоропластов, а частично – в ядерной ДНК. Фотосинтез идет при их одновременном участии.
Подобно пластидам, к самовоспроизводящимся органеллам клетки относятся и митохондрии, ответственные за дыхательную активность как растительных, так и животных клеток. Митохондрии преобразуют энергию химических связей питательных веществ в макроэргические связи АТФ в процессе клеточного дыхания (“энергетические станции клетки”).