Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции БТР.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
83.41 Кб
Скачать

Лекционный комплекс материалы к лекциям

Лекция № 1

Биотехнология – как междисциплинарная наука. Этапы развития биотехнологии. Объекты и методы биотехнологии. Биотехнология растений и её специфика.

Прикладные аспекты использования культивируемых клеток растений связаны с развитием биотехнологии. Исследования и разработки в биотехнологии за последние 20 лет привели к формированию и развитию самостоятельной области знаний биотехнологии. Биотехнология-это отрасль науки и производства, использующая биологические системы и процессы для производства экономически важных веществ и продуктов. Речь идет о «новой биотехнологии»,так как биотехнология вообще, как технология получения необходимых человеку продуктов из живых организмов существовала давно и служила основой для сельского хозяйства. Новый этап биотехнологии характеризуется привлечением для этой цели культивируемых клеток высших растений и животных, клеточных органелл, ферментных и мультиферментных систем и искусственных форм жизни, созданных методами клеточной генной инженерии.

Клетки растений in vitro сохраняют присущий интактным растениям биосинтетический потенциал и могут служить источником экономически важных продуктов клеточного метаболизма. Эта особенность культивируемых клеток растений используется для создания технологий с целью получения промышленным способом ценных веществ.

К летки ткани in vitro

Клеточная масса Растение-регенерант

Биосинтез Биотрансформация Клональное Генетическое

продуктов размножение улучшение

растений

Технологии на основе культивируемых клеток и тканей растений.

Помимо биосинтеза важных соединений, культивируемые клетки способны к биотрансформации, т.е. могут превращать дешевые предшественники в конечный ценный продукт. Другая уникальная особенность культивируемых клеток –их тотипотентность- позволяет создать нетрадиционные технологии для сельского хозяйства ,облегчающие и ускоряющие селекционный процесс и размножение растений. Способность отдельной клетки растения воссоздать целый организм обладающий всеми признаками исходной растительной формы, успешно используется для клонального размножения редких и исчезающих видов растений, ценных селекционных объектов, для получения безвирусного материала .Клоны полученные меристем ной ткани, свободны от вирусов .Преимущества клональрого микро размножения столь велики, что сейчас разработаны рентабельные биотехнологии получения посадочного материала хозяйственно ценных оздоровленных сортов картофеля ,винограда, овощных, плодовых, декоративных растений и лесных пород. Таким путем создается система безвирусного растениеводства. Получение новых сортов основывается на 4 эволюционных принципах :гибридизация, рекомбинация, мутация и отбор. Все эти принципы с успехом реализуются in in vitro. Метод культуры тканей открывает новые возможности для расширения генетического базиса, для облегчения и ускорения селекционного процесса ,для создания генетического разнообразия и конструирования принципиально новых форм растений. Следует особо подчеркнуть ,что метод культуры клеток позволяет получать генетически измененные растения значительно быстрее ,чем методами традиционной селекции.

Биотехнологические методы

1 2 3

Сочетание Клеточная Генетическая

традиционных и инженерия инженерия

новых методов

1 .Расширение генетического базиса

2.Облегчение и ускорение селекционного процесса

3.Конструирование принципиально новых форм

Лекция 2.

История развития метода культуры клеток и тканей растений. Терминология метода. Теоретические и методические принципы культивирования клеток растений.

Самые ранние работы по изолированию культур принадлежат Блоцишевскому (1876), Брауну и Моррису (1892), Боннэ, Саксу (1893). В этих исследованиях зародыши вычленялись из семени и выращивались в искусственных условиях. Первым исследователем, занявшимся установлением минимального размера экспланта, был Карл Рехингер (1893). Он выращивал тонкие срезы корня свеклы и одуванчика и сегменты стебля тополя на песке с применением водопроводной воды, без стерильных условий. Эти исследования показали, что каллус образуется при толщине среза не менее 1,5 мм. Еще в 19 веке Х. Фёхтинг провел ряд экспериментов, доказывающих тотипотентность клетки. При этом им убедительно показана полярность как органов, так и клеток.

Основы экспериментальной эмбриологии растений были заложены исследованиями Моссарта (1902), который наблюдал набухание завязей некоторых растений после обработки их спорами Licopodium, нежизнеспособными поллиниями и водными экстрактами пыльцы. В связи с этим было высказано предположение, что пыльцевая трубка не только обеспечивает передвижение спермиев к яйцеклетке, но и переносит в завязь ауксины, стимулирующие ее рост.

Г. Габерланд (1902) научился культивировать отдельные клетки в течение некоторого времени. Но он выбрал для культивирования зеленые клетки, изолированные из клеток палисадной паренхимы Lamium purpureum и волосков традесканции вирджинской и медуницы мягкой,  резонно рассудив, что при этом отпадет потребность в источниках углеводов. Исследования Габерландта  с фотосинтезирующими клетками были неудачны, что привело к потере интереса к культивированию тканей и клеток растений. Однако они все же положили начало поиску адекватных питательных смесей и условий, необходимых для поддержания роста органов, тканей и клеток растений.

Французский ученый Мольяр уже в 1921 культивировал сегменты корня и гипокотиля молодых побегов редьки. Они были способны к росту в условиях культуры, но при этом не происходило формирования новых тканей.

В 1922 г. один из учеников Рехингера - Коттэ начал эксперименты с лишенными пигментов меристематическими тканями - изолированными кончиками корней, и добился успеха. Практически одновременно и независимо от Коттэ Роббинс подобрал состав питательной среды, обеспечивающий в культуре рост апикальной меристемы корня томатов и кукурузы. Эти опыты по­ложили начало культивированию изолированных органов растений на питательных средах. Не всегда эти исследования были успешны.  Под  влиянием работ Карреля и Барроуза в 1927 году Прат начал культивировать клетки растений на средах с добавками растительных экстрактов. Результаты его экспериментов были отрицательны, так как он избрал неудачные объекты для исследований.

Начало длительным и удачным исследованиям по культивированию клеток и тканей растений положили работы американского исследователя Ф. Уайта и француза Р. Готре.  Они показали, что изолированные органы и ткани могут расти в культуре неограниченно долгое время, если их пересаживать на свежую питательную среду. Основные периоды в истории развития метода культуры клеток, тканей и органов растений:

1.1834 -1900 гг. - создание и разработка клеточной теории.

2.1900 – 1922 гг. - сформулирована идея культуры тканей.

3.1922 – 34 гг. - безуспешные поиски методов, обеспечивающих длительное культивирование тканей.

4.1934 - 39 гг. - детальная разработка техники культуры растительных тканей.

5. Период 1940 - 1960 гг. значительно расширил список видов, выращиваемых in vitro. В монографию Готре, вышедшую в 1959 г., включено уже 142 вида. Были разработаны составы питательных сред, изучено значение микро- и макроэлементов для поддер­жания нормальной ростовой активности тканей, определено влияние витаминов и стимуляторов роста. Показано значение кинетина для пролиферации клеток in vitro и индукции стеблевого морфогенеза.

5. В 1960 - 1975 гг. положено начало методу получения изолированных протопластов из тканей корня и плодов томатов путем обработки их смесью пектолитических и целлюлолитических ферментов. Осново­положник этого метода - Э. Коккинг. Такебе с сотрудниками были определены условия культивирования изолированных протопластов, при которых они образуют клеточные стенки, делятся и дают начало клеточным линиям, способным к морфогенезу. Были разработаны методы гибридизации соматических клеток путем слияния протопластов и введения в них вирусных РНК, клеточных органелл, бактерий.

6. Начиная с 1976 г., разработывались методы электрослияния протопластов и селекции гибридных клеток, культивирования гаплоидных клеток и получения новых форм и сортов сельско­хозяйственных растений. Удалось создать системы иммобили­зованных клеток для получения различных химических соеди­нений и их биотрансформации. Ведутся работы по переносу генов в растительные клетки и получению трансгенных растений.

Лекция 3

Питание культивируемых клеток. Общая характеристика питательных сред.

Необходимым условием работы с культурой изолированных тканей является соблюдение строгой стерильности. Богатая питательная среда является прекрасным субстратом для развития в ней микроорганизмов, а изолированные от растения фрагменты (экспланты), которые помещают на питательную среду, легко поражаются микроорганизмами. Поэтому надо стерилизовать как эксплант, так и питательную среду. Все манипу­ляции с изолированными тканями (введение в культуру, пересадка на све­жую питательную среду) проводят в асептическом помещении (ламинар-боксе) стерильными инструментами. Стерильность надо соблюдать и во время культивирования изолированных тканей, особенно при перепа­де температуры и влажности, так как при этом пробки становятся влаж­ными и по ним в пробирку могут проникать микроорганизмы.Стерилизацию экспланта и семян проводят выдерживая их 5—20 мин в стерилизующих растворах с последующей многократной промывкой экспланта стерильной водой. Время стерилизации зависит от характера экспланта и от стерилизующей активности раствора. Семена стерилизу­ют 10—20 мин, а вегетативные части 5—10 мин. После стерилизации растительные объекты должны быть тщательно промыты стерильной водой. Поверхностная стерилизация освобождает эксплант только от наруж­ной инфекции. Если же ткани экспланта имеют внутреннюю инфекцию, то его необходимо обработать антибиотиками. Особенно богаты внут­ренней инфекцией ткани тропических и субтропических растений с круп­ными сосудами. Загрязнение культур грибами или бактериями обычно выявляется через 1—14 дней после посадки. Загрязненные культуры не­обходимо тотчас же удалить, чтобы избежать заражения воздуха в свето­вой комнате.

Питательные среды стерилизуют в автоклаве при температуре 120°С и давлении 0,75—1 атм в течение 20 мин. Если в состав питательной сре­ды входят вещества, разрушающиеся при высокой температуре, их под­вергают холодной стерилизации, пропуская через бактериальные фильт­ры с диаметром пор 0,22—0,45 мкм, после чего добавляют в проавтокла-вированную охлажденную до 40°С основную среду. Посуду, предварительно завернутую в фольгу или оберточную бума­гу, стерилизуют сухим жаром в сушильном шкафу при 160°С в течение двух часов.Питательные среды для культивирования изолированных клеток и тканей должны включать все необходимые растениям макроэлементы (азот, фосфор, калий, кальций, магний, серу, железо) и микроэлементы бор, марганец, цинк, медь, молибден и др.), а также витамины, углеводы, .итогормоны или их синтетические аналоги. Некоторые питательные среды содержат гидролизат казеина, аминокислоты. Кроме того, в состав питательных сред входит ЭДТА (этилендиаминтетрауксусная кислота) или ее натриевая соль, которые улучшают доступность железа для кле­ток. Для получения каллусной ткани в отдельных случаях к питательной среде добавляют жидкий эндосперм кокосового ореха (кокосовое моло­ко), каштана и др.Углеводы являются необходимым компонентом питательных сред для культивирования изолированных клеток и тканей, так как в большин­стве случаев последние не способны к автотрофному питанию. Чаще все­го в качестве углевода используют сахарозу или глюкозу в концентрации 2—3 %.Фитогормоны необходимы для дедифференцировки клеток и для ин­дукции клеточных делений. Поэтому для получения каллусных тканей в состав питательных сред должны обязательно входить ауксины, вызы­ вающие клеточную дедифференцировку, и цитокинины, индуцирующие деление клеток. В случае индукции стеблевого морфогенеза содержание ауксинов в среде может быть снижено или они могут быть полностью ис­ ключены из питательной среды. На безгормональной среде растут опухолевые и «привыкшие» ткани. Автономность по отношению к обоим гормонам или к одному из них свя­зана со способностью этих клеток синтезировать гормоны.В качестве источников ауксинов в питательных средах используют 2,4-дихлорфеноксиуксусную кислоту (2,4-Д), индолил-3-уксусную ки­слоту (ИУК), а-нафтилуксусную кислоту (НУК). Для получения рыхлого хорошо растущего каллуса чаще применяют 2,4-Д, так как ИУК почти в 30 раз менее активна, чем 2,4-Д.В качестве источников цитокининов в искусственных питательных средах используют кинетин, 6-бензиламинопурин (БАП), зеатин. 6-БАП и зеатин проявляют более высокую активность в поддержании роста изо­лированных тканей и индукции органогенеза по сравнению с кинетином. В состав некоторых сред входит аденин.В настоящее время известно большое число различных по составу пи­тательных сред, но наиболее часто применяемая при выращивании изо­лированных растительных тканей в условиях in vitro среда Т. Мурасига и Ф. Скуга, впервые составленная в 1962 г. Эта среда содержит хорошо сба­лансированный состав питательных веществ и отличается от других, как правило, соотношением аммонийного и нитратного азота .Для приготовления твердых питательных сред используют агар-агар, который представляет собой полисахарид, получаемый из морских водо­рослей.

С целью рационального использования времени растворы солей мак­ро- и микроэлементов, а также витаминов и фитогормонов готовят более концентрированными, что позволяет многократно их использовать. Кон­центрированные (маточные) растворы хранят в холодильнике.Условия культивирования. Для успешного культивирования изо­лированных клеток и тканей растений необходимо соблюдать определен­ные условия выращивания. Большинство каллусных тканей не нуждается в свете, так как не имеют хлоропластов и питаются гетеротрофно. Исклю­чение составляют некоторые зеленые каллусные ткани, такие, как каллус-ная ткань мандрагоры. В некоторых случаях каллусные ткани, не способ­ные к автотрофному питанию, все же выращивают на непрерывном осве­щении, что является необходимым условием дальнейшего успешного морфогенеза, как у люцерны. Большинство же каллусных тканей получа­ют в темноте или при рассеянном свете.

Детерминированные к морфогенезу ткани переносят на свет и далее культивируют их при освещенности 1000—4000 лк. Культивирование изолированных меристем и их микроразмножение также происходит на свету. Освещенность факторостатной (световой) комнаты должна составлять в зависимости от культуры 3000—10 000 лк. Оптимальная температура для большинства культивируемых тканей 25—26°С, для культуры тканей тропических растений она может дости­гать 29—30°С.

Лекция 4

Получение и культивирование каллуса. Факторы, влияющие на каллусогенез. Культивирование клеток на агаризованной среде. Культивирование клеток в жидкой среде. Получение суспензионной культуры.

В основе культивирования растительных клеток лежит свойство тотипотентности, благодаря которому соматические клетки растения способны полностью реализовать наследственную информацию, то есть обеспечить развитие всего растения. Следует отметить, что в отличие от животной, растительная клетка предъявляет менее жесткие требования к условиям культивирования. Изменяя условия (добавляя в состав питательной среды те или иные гормоны), можно вызвать дифференциацию недетерминированных клеток. Культура растительной ткани позволяет получить многочисленные популяции в сравнительно короткое время и в ограниченном пространстве. Основным типом культивируемой растительной клетки является каллус. Каллусная ткань – один из видов клеточной дифференцировки, возникает путем неорганизованной пролиферации дедифференцированных клеток органов растения. У растений в природе каллусная ткань возникает в исключительных обстоятельствах (например, при травмах) и функционирует непродолжительное время. Эта ткань защищает место поранения, может накапливать питательные вещества для анатомической регенерации или регенерации утраченного органа. Для получения культивируемых каллусных клеток фрагменты тканей различных органов высших растений – корней, листьев, стеблей, пыльников, зародышей (экспланты) помещают на искусственную среду, содержащую ауксины, в пробирки, колбы, чашки Петри (in vitro). В качестве ауксинов используют 2,4-дихлорфеноксиуксусную кислоту (2,4-Д), a-нафтилуксусную кислоту (НУК), индолил-масляную кислоту (ИМК), индолилуксусную кислоту (ИУК) в концентрации 0,5 – 10 мг / л, в зависимости от вида экспланта. Процессу образования каллуса предшествует дедифференцировка тканей экспланта. При дедифференцировке ткани теряют структуру, характерную для их специфических функций в растении, и возвращаются к состоянию делящихся клеток. Если эксплант, используемый для получения каллуса, является фрагментом органа, то имеет в своем составе эпидермальные клетки, клетки камбия, сосудистой системы, сердцевинной и первичной коровой паренхимы. Преимущественно пролиферируют клетки камбия, коры, сердцевинной паренхимы.

Для возбуждения процессов подготовки к делению достаточно начального кратковременного действия ауксина. Поэтому процессы, происходящие в клетках под влиянием ауксина, можно разделить на первичные, непосредственно индуцированные ауксином, и вторичные, являющиеся следствием первичного индуцирующего действия. Исходя из этого, можно предположить, что в митотическом цикле растительных клеток имеются кратковременные переходы, когда необходимо присутствие ауксина в клетках, и более продолжительные периоды, когда присутствие ауксинов в клетке не является необходимым.

Суспензионные культуры

Суспензионные культуры – отдельные клетки или группы клеток, выращиваемые во взвешенном состоянии в жидкой среде. Представляют собой относительно гомогенную популяцию клеток, которую легко подвергнуть воздействию химических веществ.

Суспензионные культуры широко используются в качестве модельных систем для изучения путей вторичного метаболизма, индукции ферментов и экспрессии генов, деградации чужеродных соединений, цитологических исследований и др.

Признаком «хорошей» линии служит способность клеток к перестройке метаболизма и и высокая скорость размножения в конкретных условиях культивирования. Морфологические характеристики такой линии:

высокая степень дезагрегации (5-10 клеток в группе);

морфологическая выравненность клеток (небольшие размеры, сферическая или овальная форма, плотная цитоплазма);

отсутствие трахеидоподобных элементов.

Клеточную суспензию получают, помещая каллусную ткань в колбу с жидкой питательной средой. Суспензия перемешивается в колбе на качалке, имеющей скорость перемешивания 100 – 120 об/мин. При первом переносе на свежую среду удаляют крупные кусочки исходного каллуса и крупные агрегаты, фильтруя через 1 – 2 слоя марли, нейлоновые сита, шприц с соответствующим отверстием. Для инициализации суспензионной культуры необходимо 2 – 3 г свежей массы каллусной культуры на 60 – 100 мл жидкой питательной среды. Однако для каждой линии культуры клеток существует минимальный объем инокулята, при меньшем размере которого культура не растет.

Рост суспензионных культур клеток можно оценивать по одному или нескольким следующим параметрам:

1. Объем осажденных клеток (ООК).

2. Число клеток. Подсчитывается в камере Фукса-Розенталя.

3. Сырая и сухая масса.

4. Содержание белка.

5. Проводимость среды.

6. Жизнеспособность клеток.

По полученным данным строят ростовые кривые, которые имеют S-образную форму и состоят из нескольких участков: 1- латентная, или лаг-фаза, где видимый рост не наблюдается ни по одному из критериев; 2 – экспоненциальная, рост с ускорением; 3 – линейная, где скорость роста постоянна; 4 – фаза замедленного роста; 5 – стационарная фаза; 6 – фаза деградации клеток

Реальная ростовая кривая может несколько отличаться от модельной. На форму ростовых кривых влияют и генетическая характеристика популяции (вид растения), и количество инокулята, и условия выращивания (состав среды, начальное значение рН, состав газовой фазы, скорость перемешивания). Периодическое, или накопительное, культивирование — это самый простой способ выращивания клеток, являющийся пока традиционным.

Лекция 5

Биология культивируемых клеток. Процессы дифференциации, дедифференциации. Дедифференцировка клеток экспланта и образование каллуса. Культура каллусных тканей. Тотипотентность культивируемых клеток. Характеристика каллусных клеток. Рост культивируемых клеток. Редифференцировка каллусных клеток.

Выделяют два типа культивируемых растительных клеток: нормальные и опухолевые. Опухолевые клетки морфологически мало отличаются от каллусных. Физиологическим различием является гормононезависимость опухолевых клеток. Благодаря этому свойству опухолевые клетки делятся и растут на питательных средах без добавок фитогормонов. Эти клетки также лишены способности дать начало нормально организованным структурам (корни, побеги) в процессе органогенеза. Иногда они образуют тератомы (уродливые органоподобные структуры), дальнейшее развитие которых невозможно. Нормальные клетки в культуре могут существовать в двух видах: в виде суспензии в жидкой питательной среде и на поверхности твердой питательной среды в виде каллуса. Поверхностное культивирование осуществляют на полужидкой агаризованной среде, среде с добавлением других желирующих полимеров, на дисках из полиуретана, на мостиках из фильтровальной бумаги, полупогруженных в жидкую питательную среду. Можно также использовать комочки ваты, пропитанные питательной средой, которые сверху покрываются кусочком фильтровальной бумаги. Каллусная ткань, выращиваемая поверхностным способом, представляет собой аморфную массу тонкостенных паренхимных клеток, не имеющую строго определенной анатомической структуры. Цвет массы может быть белым, желтоватым, зеленым, красным. В зависимости от происхождения и условий выращивания каллусные ткани бывают:

- рыхлые, сильно оводненные, легко распадающиеся на отдельные клетки;

- средней плотности, с хорошо выраженными меристематическими очагами;

- плотные, с зонами редуцированного камбия и сосудов. Как правило, в длительной культуре на средах, содержащих ауксины, каллусные ткани теряют пигментацию и становятся рыхлыми.

В цикле выращивания каллусной ткани клетки после ряда делений приступают к росту растяжением, дифференцируются как зрелая каллусная ткань и деградируют. Для того, чтобы не произошло старения, утраты способности к делению и дальнейшему росту, а также отмирания каллусных клеток, первичный каллус переносят на свежую питательную среду через 28 - 30 дней, то есть проводят пассирование или субкультивирование каллусной ткани. Неорганизованно растущая каллусная ткань характеризуется тремя типами клеток: мелкими, средними и крупными. При пассировании ткани на среду, содержащую индукторы органогенеза, мелкие клетки приступают к делению и формируют меристематические очаги. Деление клеток меристематического очага приводит либо к формированию почек и последующему развитию из них побегов (геммогенез), либо к ризогенезу. Клетки меристемы с самых ранних стадий развития отличаются от каллусных высоким содержанием РНК и белка. При образовании соматических эмбриоидов каллусная клетка средних размеров обособляется, ограничивается плотной оболочкой, теряет крупные вакуоли. Она содержит крупное структурированное ядро с ядрышком. Клетка делится митотически, в результате чего возникают 2 клетки проэмбрио. Последующие деления клеток приводят к формированию шаровидного зародыша, а также органа, аналогичного суспензорам в зародышевом мешке семяпочки. Дальнейшее развитие соматического эмбриона через ряд стадий ведет к регенерации целого растения с корнями и побегами, так как в этом случае формируется биполярная структура. Переход специализированных неделящихся клеток к пролиферации связан с их дедифференциацией, другими словами — утратой специализации. В основе этого процесса, как и при дифференциации клеток в интактном растении, лежит дифференциальная активность генов. Возникновение физиологических и структурных различий между клетками и тканями растений, связанное с их функциональной специализацией, называют процессом дифференциации. Понятие «дифференциация» отражает превращение эмбриональной, меристематической клетки в специализированную. Меристематические клетки, однотипные по структуре и функции, начинают развиваться различными путями, создавая ткани разных органов. Как это осуществляется — один из труднейших вопросов клеточной биологии. Детерминация (определение) пути развития каждой клетки является основой физиологии развития. Вступление на тот или иной путь развития определяется особым набором белков, т. е. каждая специализированная клетка вырабатывает только ей свойственные белки, что является следствием дифференциальной активности генов — экспрессии одной группы генов при одновременной репрессии других. Способность одной-единственной зрелой соматической клетки дать начало целому организму (тотипотентность) показывает, что в процессе нормальной клеточной дифференциации у растений не происходит утраты или необратимой инактивации каких-либо генов. У растений почти всякая дифференциация обратима при условии, если дифференцированная клетка живая, в протопласте сохранилось ядро и не образовалась вторичная оболочка. Даже такие высокоспециализированные клетки, как микроспоры, с помощью ряда экспериментальных процедур можно заставить пролиферировать и дать начало целому растению. Итак, в определенных условиях многие из зрелых растительных клеток сохраняют способность делиться, а в некоторых случаях даже вступить на новый путь развития. Однако вопрос о том. как это происходит, какие события на молекулярном уровне сопровождают этот процесс, остается открытым.

Лекция 6

Клеточные технологии для получения экономически важных веществ растительного происхождения. Генотип. Изменчивость культивируемых клеток. Химические и физические факторы культивирования.

Суспензионные культуры используют для промышленного получения вторичных метаболитов. Вещества, продуцируемые растительными клетками используются в медицине, парфюмерной промышленности, растениеводстве и других отраслях промышленности. К ним относятся: алкалоиды, терпеноиды, гликозиды, полифенолы, полисахариды, эфирные масла, пигменты, антиканцерогены (птотецин, харрингтонин), пептиды (ингибиторы фитовирусов). В настоящее время в разных странах около ста видов растений используется в биосинтетической промышленности для получения экономически важных веществ, среди них — женьшень, раувольфия змеиная, наперстянка шерстистая и пурпурная, диоскорея дельтовидная, воробейник, беладонна, паслен дольчатый, дурман обыкновенный, ландыш майский, клещевина, агава, мак снотворный и др. Получение вторичных метаболитов имеет свои особенности. Деление клеток, приводящее к увеличению клеточной биомассы, и синтез вторичных метаболитов разобщены во времени. Накопление вторичных метаболитов возрастает в фазе замедленного роста клеточной популяции и достигает максимума в стационарной фазе. Некоторые алкалоиды активно синтезируются в фазе максимальной митотической активности (экспоненциальный рост), что является исключением. Знание таких закономерностей позволяет регулировать процессы получения ценных веществ. Механизмы и условия, блокирующие активный рост клеток и клеточную пролиферацию, одновременно активируют ферменты вторичного метаболизма. Неспецифические стрессовые условия, воздействующие на клетки в конце экспоненциальной фазы, могут стимулировать переход к синтезу вторичных метаболитов и увеличивать их выход. Необходимо учитывать, что вопрос взаимодействия первичного и вторичного метаболизма, рассмотренный нами в упрощенном виде, намного сложнее.

Лекция 7

Клональное микроразмножение растений и его преимущества. Методы клонального микроразмножения. Индукция развития пазушных меристем. Образование придаточных побегов непосредственно из культивируемых эксплантов. Регенерация растений из каллуса.

В природе существует два способа размножения растений: половой (семенной) и вегетативный. Оба эти способа имеют как свои преимущества, так и недостатки.

К недостаткам семенного размножения относятся генетическая пестрота семенного материала и длительность ювенильного периода.

При вегетативном размножении генотип материнского растения сохраняется, а также сокращается длительность ювенильного периода. Однако большинство видов плохо размножается вегетативным способом, к ним относятся многие древесные породы. Например, эффективность размножения, даже на ювенильной стадии, дуба, сосны, ели, орехоплодных не очень высока. Кроме того, с помощью черенкования невозможно размножать многие виды древесных растений в возрасте старше 10-15 лет. Трудно получить стандартный посадочный материал, так как существует возможность накопления и передачи инфекции. Операции по размножению с помощью прививок сложны и трудоемки.

Достижения в области культуры клеток и тканей привели к созданию принципиально нового метода вегетативного размножения - клонального микроразмножения. Клональное микроразмножение - получение in vitro, неполовым путем, генетически идентичных исходному экземпляру растений. В основе метода лежит уникальная способность растительной клетки реализовывать присущую ей тотипотентность. Термин "клон" был предложен в 1903 году Уэбстером (от греческого klon - черенок или побег, пригодный для размножения растений). В соответствии с научной терминологией клонирование подразумевает получение идентичных организмов из единичных клеток. Этот метод имеет ряд преимуществ перед существующими традиционными способами размножения:

получение генетически однородного посадочного материала;

освобождение растений от вирусов за счет использования меристемной культуры;

высокий коэффициент размножения (105 - 106 - для травянистых, цветочных растений, 104 – 10 5 - для кустарниковых древесных растений и 104 - для хвойных);

сокращение продолжительности селекционного процесса;

ускорение перехода растений от ювенильной к репродуктивной фазе развития;

размножение растений, трудно размножаемых традиционными способами;

возможность проведения работ в течение всего года;

возможность автоматизации процесса выращивания.

Пионером клонального микроразмножения считается французский ученый Жан Морель, который в 50-х годах нашего столетия получил первые растения - регенеранты орхидей. В это время техника культивирования апикальных меристем in vitro была уже хорошо разработана. Как правило, исследователи в качестве первичного экспланта использовали верхушечные меристемы травянистых растений: гвоздики, хризантемы, подсолнечника, гороха, кукурузы и т.д. В нашей стране работы по клональному микроразмножению были начаты в 30-х годах в лаборатории культуры тканей и морфогенеза ИФРа. Под руководством Р.Г.Бутенко были изучены условия микроразмножения картофеля, сахарной свеклы, гвоздики, герберы и др. растений и предложены промышленные технологии. В дальнейшем исследования по клональному микроразмножении охватили и древесные растения.

Первые работы по культуре тканей древесных растений были опубликованы в середине 20-х годов нашего столетия и связаны с именем Готре, который показал, что камбиальные ткани некоторых растений способны к каллусогенезу in vitro. Но первые растения - регенеранты осины, доведенные до почвенной культуры, были получены лишь в середине 60-х годов Матесом.

Культивирование тканей хвойных пород in vitro долгое время редко использовалось как объект исследования. Это было связано со специфическими трудностями культивирования тканей, изолированных из растения. Известно, что древесные, и особенно хвойные растения характеризуются медленным ростом, трудно укореняются, содержат большое количество вторичных соединений (фенолы, терпены и т.д.), которые в изолированных тканях активируются. Окисленные фенолы обычно ингибируют деление и рост клеток, что ведет к гибели первичного экспланта или уменьшению способности тканей древесных растений к регенерации адвентивных почек, которая с возрастом растения-донора исчезает практически полностью. В настоящее время, несмотря на перечисленные трудности, насчитывается более 200 видов древесных растений из 40 семейств, которые были размножены in vitro (каштан, дуб, береза, клен, сосна, ель, секвойя и др.).

Лекция 8

Оздоровление растений от вирусных болезней. Культура апикальной меристемы. Методы диагностики зараженных растений. Термотерапия. Химиотерапия. Оздоровление посадочного материала от вирусов

Основное преимущество клонального микроразмножения - получение генетически однородного, безвирусного посадочного материала. Предположение о возможности отсутствия вирусов в меристематических тканях больных растений впервые было высказано в 1936 г. Чунгом, а позднее, в 1943 г., и Уайтом. В 1949 г. этот факт был подтвержден экспериментально. В 1952 г. Морелю и Мартену из Национального агрономического института (Франция) удалось получить безвирусные георгины из зараженных растений.

Структурной основой используемого на практике явления служит специфика строения точки роста растений: дистальная ее часть, представленная апикальной меристемой, у разных растений имеет средний диаметр 200 мкм и высоту от 20 до 150 мкм. В нижних слоях дифференцирующиеся клетки меристемы образуют прокамбий, дающий начало пучкам проводящей системы.

Известно, что успех клонального микроразмножения зависит от меристематического экспланта. При этом отмечается закономерность: чем больше листовых зачатков и тканей, тем легче идут процессы морфогенеза, заканчивающиеся образованием целого растения. Вместе с тем, при таком развитии конуса нарастания увеличивается риск быстрой транспортировки вируса по проводящей системе. Кроме того, даже небольшой меристематический эксплант может содержать вирусы, проникшие в клетки в результате медленного распространения через плазмодесмы.

В целом, эффективность применения апикальной меристемы в качестве метода оздоровления зараженных вирусами растений может оказаться довольно низкой. Снизить риск попадания вирусов в здоровые ткани можно путем применения предварительной термо- или химиотерапии исходных растений.

Метод термотерапии применяется как в условиях in vivo, так и in vitro и предусматривает использование горячего сухого воздуха. Для объяснения механизма освобождения растений от вирусов в процессе термотерапии существуют различные гипотезы. Согласно одной их них при высоких температурах разрушаются белковая оболочка и нуклеиновая кислота вируса. Вторая гипотеза предполагает действие высоких температур на вирусы через метаболизм растений. При такой температуре начинает преобладать деградация вирусных частиц, а синтез их, наоборот, уменьшается. Растения, подвергающиеся термотерапии, помещают в термокамеры, где температура в течение первой недели повышается с 25 до 37оС путем ежедневного увеличения температуры на 2 градуса. Все остальные режимы обязательно поддерживаются в оптимальном состоянии: освещенность, высокая относительная влажность воздуха, определенный фотопериод. Продолжительность термостатирования зависит от состава вирусов и их термостойкости. Если для гвоздики достаточно 10 - 12 недельного воздействия теплом, то для хризантемы этот период превышает 12 недель.

Помимо положительного действия высоких температур на освобождение от вирусов, выявлено аналогичное влияние их на точку роста и процессы морфогенеза некоторых цветочных культур (гвоздики, фрезии) в условиях in vitro. Высокие температуры увеличивают коэффициент размножения на 50 -  60%, повышаю адаптацию пробирочных растений к почвенным условиям и позволяют получить больше безвирусных маточных растений.

Другой способ оздоровления - химиотерапия. В питательную среду, на которой культивируют апикальные меристемы, добавляют препарат вирозола в концентрации 20 - 50 мг/л. Это противовирусный препарат широкого спектра действия. Применение его позволяет увеличить число безвирусных растений с 40% до 80 - 100%.

Лекция 9

Преодоление in vitro прогамной и постгамной несовместимости. Отдаленная гибридизация и проблема нескрещиваемости. Прогамная и постгамная несовместимость при отдалённой гибридизации. Преодоление постгамной несовместимости путём культивирования изолированных зародышей in vitro.

Одно из направлений клеточных технологий — это использование их в селекции, которое облегчает и ускоряет традиционный селекционный процесс в создании новых форм и сортов растений. Существующие методы культивирования изолированных клеток и тканей in vitro условно можно разделить на две группы.

Первая группа — это вспомогательные технологии, которые не подменяют обычную селекцию, а служат ей. К ним можно отнести: оплодотворение in vitro (преодоление прогамной несовместимости), культивирование семяпочек и незрелых гибридных зародышей (преодоление постгамной несовместимости), получение гаплоидов путем культивирования пыльников и микроспор, криосохранение изолированных клеток, тканей и органов, клональное микроразмножение отдаленных гибридов.

Вторая группа методов ведет к самостоятельному, независимому от традиционных методов селекции, получению новых форм и сортов растений: клеточная селекция с использованием каллусной ткани, соматическая гибридизация (слияние изолированных протопластов и получение неполовых гибридов), применение методов генной инженерии.

В отдаленной гибридизации находят применение такие методы культуры изолированных тканей, как оплодотворение in vitro, эмбриокультура (выращивание изолированных зародышей на искусственных питательных средах), клональное микроразмножение ценных гибридов, а также получение гаплоидов in vitro и криосохранение.

Оплодотворение  in vitro (преодоление прогамной несовместимости) проводится в том случае, когда невозможно осуществить оплодотворение между выбранными парами в естественных условиях. Это вызвано несколькими причинами: 1) физиологические (несоответствие во времени созревания пыльцы и т. д.); 2) морфологические (короткая пыльцевая трубка или блокирование роста ее на раз­ных этапах развития и т. д.).

Оплодотворение in vitro можно осуществить двумя способами: а) культивирование на искусственной агаризованной питательной среде завязи с нанесенной на нее готовой пыльцой; б) завязь вскрывается и на питатель­ную среду переносятся кусочки плаценты с семяпочками, вблизи которых или непосредственно на ткани плаценты культивируется готовая пыльца. Визуально определить, прошло оплодотворение in vitro или нет, можно по быстро увеличивающимся в размерах семяпочкам. Сформировавшийся зародыш, как правило, не переходит в состояние покоя, а сразу прорастает и дает начало гибридному поколению. Плацентарное оплодотворение in vitro позволило преодолеть несовместимость в скре­щивании сортов культурного табака N. tabacum с дикими видами N. rosulata и N. debneyi и сделало возможным получение межвидовых гибридов табака в опытах М.Ф. Терновского и др. (1976), Шинкаревой (1986).

Постгамная несовместимость при отдаленной гибридизации возникает после оплодотворения. Часто при этом образуются щуплые невсхожие семена. Причиной может быть расхождение во времени развития зародыша и эндосперма. Из-за слабого развития эндосперма зародыш бывает неспособен к нормальному прорастанию. В таких случаях из зрелой щуплой зерновки изолируют зародыш и выращивают его в питательной среде.

Выращивание зародышей в искусственной питательной среде называется эмбриокультурой. Среда для выращивания зрелого зародыша может быть простой, без добавок физиологически активных веществ (например, среда Уайта) или любая другая, содержащая минеральные соли и сахарозу. При более отдаленных скрещиваниях нарушения в развитии зародыша могут наблюдаться уже на ранних этапах, что выражается в отсутствии дифференцировки, замедленном росте. В этом случае культура зародыша состоит из двух этапов — эмбрионального роста зародыша, во время которого продолжается его дифференцировка, и прорастания подросшего зародыша. Для первого этапа требуется более сложная по составу среда с повышенным содержанием сахарозы, с добавками различных аминокислот, витаминов и гормонов.

Применение эмбриокультуры в селекции приобретает в последнее время большое значение для получения отдаленных гибридов зерновых, злаковых и других сельскохозяйственных культур. Показана возможность увеличения выхода пшенично-ржаных гибридов путем доращивания незрелых зародышей, а также использования эмбриокультуры для преодоления постгамной несовместимости при гибридизации пшеницы с колосняком.

Метод эмбриокультуры находит все более широкое применение в межвидовой гибридизации овощных растений. Для лука разработаны приемы выращивания in vitro абортивных зародышей от гибридных семян с разных этапов эмбриогенеза, выращивание зародышей от частично фертильных межвидовых гибридов. Культура изолированных зародышей используется в селекции томатов и других овощных растений.

Исследована гормональная регуляция роста и развития зародышей томата in vitro . Обсуждается возможность применения эмбриокультуры для получения отдаленных гибридов подсолнечника, изучаются факторы, контролирующие рост и развитие in vitro зародышей подсолнечника, выделенных в разные сроки после опыления.

Культура изолированных зародышей как вспомогательный метод при отдаленной гибридизации применяется не только для преодоления постгамной несовместимости, но также с целью микроразмножения ценных гибридов. В этом случае микроразмножение идет путем каллусогенеза, индукции морфогенеза и получения растений-регенерантов из каллусной ткани. Техника клонирования незрелых зародышей позволяет размножать ценные генотипы растений на ранних стадиях жизненного цикла. Еще одна возможность применения культуры зародышей — использование ее в клеточной селекции.

Лекция 10

Гаплоидная технология. Получение гаплоидов в культуре пыльников. Развитие микроспор in vitro и регенерация растений. Прямой и косвенный андрогенез. Культура пыльцы. Факторы, влияющие на андрогенез in vitro. Генотип. Стадия развития микроспор. Пыльцевой диморфизм. Температурная предобработка микроспор. Питательная среда и условия культивирования.

Большой интерес для селекционеров представляют гаплоидные растения. Гаплоиды получают двумя способами.

Первый способ классический – отдаленная гибридизация, когда в зиготе отдаленного гибрида хромосомы одного из видов элиминируют.

Второй способ основан на методиках культивирования in vitro, где из неоплодотворенных половых клеток с редуцированным набором хромосом можно регенерировать целые растения. Обычно они стерильны, так как у них нарушено формирование мужских и женских гамет. При культивировании in vitro, однако, может произойти спонтанное удвоение хромосом, или его можно вызвать искусственно, например, обработав колхицином клетки или растения. Дигаплоиды фертильны и вполне жизнеспособны.

Гаплоиды и дигаплоиды имеют ряд преимуществ в селекционной работе:

гаплоидные растения имеют один набор хромосом, характерный для гамет, что дает селекционерам возможность наблюдать мутации сразу же в ходе осмотра гаплоидных растений, поскольку все рецессивные генные мутации в гаплоидных организмах не маскируются доминантными аллелями;

если гаплоидные клетки подвергнуть полиплоидизации с помощью колхицина, то возникнут дигаплоиды, характеризующиеся абсолютной гомозиготностью. Скрещивание гомозиготных линий дает, как правило, высокопродуктивное потомство. С другой стороны, в настоящее время картофель не размножают семенами из-за пестроты потомства, а создание с помощью гаплоидов гомозиготных линий устранит этот недостаток;

гомозиготные растения используются селекционерами и в других целях: количественный генетический анализ, изучение взаимодействия генов, изучение генетической изменчивости, определение групп сцепления, установление числа генов, действующих на количественные признаки, определение локализации полигенов и т.д.

гаплоидные растения лишены летальных или сублетальных мутаций, ведущих к гибели или ослаблению потомства.

Гаплоиды высших растений можно получить из эксплантов, взятых на любой стадии развития гаметофита после редукционного деления клеток спорогенной ткани пыльника.

Наиболее распространены следующие методы индуцирования гаплоидов:

индуцированный андрогенез в культуре пыльников и пыльцы;

селективная элиминация хромосом в гибридном зародыше. Этот метод чаще всего используется в селекции злаковых;

псевдогамия - развитие гаплоидного зародыша после оплодотворения инородной пыльцой без оплодотворения яйцеклетки или же развитие изолированной семяпочки (гиногенез).

В клеточной инженерии чаще применяется первый метод. Впервые гаплоидные растения были получены в 1964 году индийскими исследователями С. Гуха и С. Махешвари при культивировании пыльников дурмана. С тех пор таким методом получены гаплоидные растения более чем у 200 видов, в том числе у пшеницы, ячменя, ржи, риса, картофеля и других культур. Для культуры пыльников используют целые пыльники, стерильно выделенные из бутонов в определенной фазе развития. Их помещают на твердую питательную среду, либо на поверхность жидкой питательной среды. В редких случая культивируют бутоны или соцветия.

Получение гаплоидных растений из изолированных пыльников может идти по двум направлениям: прямая регенерация соматических зародышей и косвенная - через каллусогенез. В первом случае внутри пыльников из отдельных пыльцевых зерен формируются проэмбриональные структуры, которые при определенных условиях культивирования развиваются в эмбриоиды, дающие начало гаплоидным растениям. Эмбриоиды - зародышеподобные структуры. Во втором - пыльца делится, но клетки, возникшие в результате делений, быстро увеличиваются в размерах и, разрывая оболочку пыльцевого зерна, образуют каллус. В результате дальнейшего морфогенеза из этих каллусных клеток регенерируют растения. При этом растения могут иметь разную степень плоидности - ди-, поли-, анеуплоидные. Последние часто стерильны, но после обработки растений колхицином происходит удвоение числа хромосом, в результате чего можно получить фертильные гомозиготы.

Культура пыльцы представляет собой культивирование микроспор, освобожденных от соматических тканей пыльника, в жидкой среде. Пыльцу от соматической ткани пыльника отделяют несколькими способами:

1.Спонтанное высвобождение (пассивный способ) - пыльники определенным образом обрабатываются, инкубируются на жидкой среде, где лопаются, а пыльца высвобождается и всплывает наверх.

2.Гомогенизация и фильтрация. Пыльники, культивируемые в жидкой среде, разрушают, надрезая скальпелем и осторожно надавливая, затем фильтруют (поры фильтра 50 -100 мкм) и центрифугируют. Осадок промывают и суспендируют в жидкой среде.

3.Разрезание - разрезают стенку пыльника. Этот метод применяется редко, так как т рудоемок и длителен.

Пыльцевой эмбриогенез обусловлен функциональной и структурной детерминацией пыльцевого ядра и клеток гаметофита, поэтому в развитии могут принимать участие: - лишь вегетативные клетки, - лишь генеративные клетки, - оба типа клеток, если вегетативные и генеративные клетки сольются, при этом образуется диплоидный эмбриоид. Для пасленовых характерен только эмбриогенез, для злаковых - образование как каллусов, так и эмбриоидов. Среди гаплоидов много альбиносов (особенно у злаков). Наибольший выход регенерантов-альбиносов в культуре пыльцы, что вызвано, по-видимому, нарушениями развития пыльцы. Причина не установлена, возможно, это результат мутаций в микроспорах при культивировании.

Работы по получению гаплоидов в культуре женского гаметофита начались в 50-е годы. В последнее время интерес к ним возрос. У растений с мужской стерильностью культивирование неоплодотворенных семяпочек является единственной возможностью получения гаплоидов. Женский гаметофит может быть источником получения гаплоидов и у растений с низким морфогенетическим потенциалом каллусной ткани, либо если каллусная ткань регенерирует растения-альбиносы. У некоторых растений, например у ячменя и риса, индукция зеленых растений намного выше при гиногенезе по сравнению с андрогенезом.

В зависимости от того, какая клетка зародыша даст начало новому организму, различают партеногенез и апогамию. Партеногенез – развитие яйцеклетки без оплодотворения. При апогамии зародыш развивается из синергиды или антиподы. Гиногенез может идти двумя путями – через эмбриогенез и через каллусогенез. В работах Сан Наума с ячменем было показано, что гаплоидные эмбриоиды преимущественно образовывались из антипод, а каллус – из синергид.

Лекция 11

Клеточная селекция. Исходный материал для клеточной селекции: каллусные культуры на агаризованной и в жидкой среде, изолированные протопласты и др. Методы клеточной селекции. Отбор устойчивых клеток. Стабилизация признака устойчивости.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]