
- •Лабораторная работа №13 Определение длины волны излучения гелий-неонового лазера с помощью дифракционной решетки.
- •Дифракция на эритроците, наблюдаемая с помощью гелий-неонового лазера. Определение размера эритроцита.
- •Электромагнитные волны
- •14.7. Шкала электромагнитных волн. Классификация частотных интервалов, принятая в медицине
- •Интерференция и дифракция света. Голография
- •§ 19.1. Когерентные источники света. Условия для наибольшего усиления и ослабления волн
- •§ 19.2. Интерференция света в тонких пластинках (пленках). Просветление оптики
- •19.3. Интерферометры и их применение. Понятие об интерференционном микроскопе
- •19.4. Принцип Гюйгенса—Френеля
- •1 Рис. 19.10 9.5. Дифракция на щели в параллельных лучах
- •19.6. Дифракционная решетка. Дифракционный спектр
- •19.7. Основы рентгеноструктурного анализа
- •19.8. Понятие о голографии и ее возможном применении в медицине
- •Основы устройства и работы лазеров
- •Классификация лазеров.
- •Гелий-неоновый лазер.
- •Рубиновый лазер.
- •Молекулярный лазер на двуокиси углерода (co2-лазер).
- •Биофизические основы действия лазерного излучения на организм. Использование низкоинтенсивных лазеров в медицине.
- •Использование высокоинтенсивного лазерного излучения в медицине. Лазерная хирургическая установка "ромашка -1".
- •Безопасность при эксплуатации лазерных установок.
Классификация лазеров.
Лазеры можно классифицировать по особенностям активной среды (твердотельные лазеры, газовые лазеры, лазеры на красителях) и по способу накачки (лазеры с оптической накачкой, газоразрядные лазеры, химические лазеры). Но любая из классификаций не выглядит убедительной, так как в рамки одного и того же класса попадают системы, совершенно не похожие по другим признакам. По совокупности признаков (среда, способ накачки, генерируемая мощность и др.) удобно выделить следующие виды лазеров.
1. Твердотельные лазеры на люминесцирующих средах (лазеры на стеклах, рубиновые лазеры и т. п.); накачка оптическая. Мощные лазеры. Применение: лазерная технология (сварка, закалка, в установках лазерного термоядерного синтеза), лазерная спектроскопия и т. п.
2. Электроразрядные лазеры низкого давления на благорадных газах (He-Ne, He-Xe). Маломощные лазеры, излучение высокой монохроматичности и направленности. Применение: спектроскопия, настройка оптических систем.
3. N2-,CO2- и CO-лазеры высокого давления; накачка - электроионизационный разряд в газах. Практически достижимая мощность более 10 кВт. Применение: спектроскопия, лазерная химия, медицина, технология.
4. Ионный аргоновый лазер; накачка - газовый разряд. Мощность несколько десятков Вт. Применение: спектроскопия, нелинейная оптика, медицина.
5. Полуповодниковые лазеры; накачка инжекцией через гетеропереход или электронным пучком. Лазеры миниатюрны, имеют большой кпд. Применение: оптические линии связи, звуко- и видиосистемы. Перспективны для лазерного телевидения.
6. Лазеры на красителях (рабочая среда - жидкость); оптическая накачка. Основное достоинство - большой диапазон плавной перестройки частоты генерируемого излучения.
7. Химические лазеры. Основной источник энергии - химические реакции между компонентами рабочей среды. Мощные лазеры. ИК- область излучения. Применение: спектроскопия, лазерная химия.
8. Лазеры на свободных электронах. С ними связываются дальнейшие перспективы развития лазеров. Однако систем, работающих в видимом диапазоне и имеющих практическое значение пока нет.
9. Гамма-лазеры и лазеры рентгеновского диапазона. Широко обсуждаются в литературе. Есть экспериментальные образцы.
Гелий-неоновый лазер.
Принципиальная схема гелий-неонового лазера изображена на рис.5:
Рис. 5
1 - газоразрядная стеклянная трубка, = несколькo мм. Торцы трубки замкнуты плоскопараллельными стеклянными или кварцевыми пластинками, ориентированными под углом Брюстера к оси трубки. Давление гелия в трубке примерно 1мм рт.ст., давление неона - 0,1 мм рт.ст. Трубка имеет катод 2, накаливаемый низковольтным источником питания, и цилиндрический пустотелый анод 3. Между катодом и анодом на трубку накладывается напряжение 1 - 2,5 кВ. Разрядный ток в ней равен нескольким десяткам мА. Разрядная трубка гелий-неонового лазера помещается между зеркалами 4, 5. Зеркала, обычно сферические делаются с многослойными диэлектрическими покрытиями, имеющими высокие значения коэффициента отражения и почти не обладающие поглощением света. Пропускание одного зеркала составляет обычно около 2%, другого- менее 1%.
При нагретом катоде трубки и включенном анодном напряжении трубка светится, и в ней отчетливо виден газоразрядный столб розового цвета. При правильной ориентации через оба зеркала (но в особенности через зеркала с большим значением коэффициента пропускания) распространяются хорошо коллимированные интенсивные пучки монохроматического (красного) света ( = 632,8 нм). Эти пучки возникают в результате генерации излучения гелий-неонового лазера.
На рис.6 приведена упрощенная схема уровней энергии атома неона (справа). Излучению с длинами волн 632,8 нм и 1150 нм соответствуют переходы E3 - E1 и E2 - E1. Помимо уровней E4, E3, E2, E1 атом неона имеет ещё 28 состояний с энергиями, меньшими E3, но мы их не рассматриваем. В результате столкновений с электронами газоразрядной плазмы часть атомов возбуждается, что отмечено на рис.6 вертикальными пунктирными стрелками. При определенных режимах разряда этот процесс оказывается достаточным для образования инверсной заселенности уровней E2 и E1. Однако уровни E3, E1 и E3, E4; переходы между которыми отвечают = 632,8 нм и = 3390 нм, заселены не инверсно.
Положение изменяется, если в разрядную трубку ввести гелий. Гелий обладает двумя долгоживущими (метастабильными) состояниями E2, E3, показанными на левой части рис. 6; эти состояния возбуждаются при столкновениях с электронами и ввиду большой длительности их существования, концентрация метастабильных атомов гелия в разряде очень велика. Энергии E3,E2 метастабильных состояний гелия очень близки к энергиям E3,E2 неона, что благоприятно для передачи энергии возбуждения от гелия к неону при их столкновениях. Эти процессы символизируются горизонтальными пунктирными стрелками. В результате концентрация атомов неона, находящихся на уровнях E3, E2, резко увеличивается, и возникает инверсная заселенность уровней E3 и E1, а разность заселенностей уровней E2 и E1 увеличивается в несколько раз. Таким образом, добавление гелия к неону (5:1 - 10:1) весьма существенно для генерации в гелий-неоновом газовом лазере.