Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математические Основы ТАУ Часть 3 (1).doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.55 Mб
Скачать

Суммирование дискретных функций.

Пусть дискретная функция определена при положительных значениях аргумента . Требуется найти такую дискретную функцию , для которой функция является первой разностью. Эта задача аналогична задаче о нахождении первообразной в анализе непрерывных функций. Искомая функция имеет вид

, где

Действительно

.

Функция называется первообразной для дискретной функции .

Если дискретная функция определена при всех целочисленных значениях аргумента k=0,1, 2,…, то для определения первообразной необходимо дополнительно потребовать, чтобы при каждом конечном сходился ряд . При этом условии первообразная определяется выражением

.

Если функция является первообразной для функции , то и функция также является первообразной для дискретной функции , где – постоянная величина. Действительно

.

Таким образом, общий вид первообразной для данной дискретной функции определяется формулой

.

Значение постоянной можно выразить через значение первообразной при некотором фиксированном значении аргумента, например при

.

Подставляя полученное выражение в формулу (19), найдем

.

Откуда

(20)

для любого .

Формула (20) является аналогом соответствующей формулы интегрального исчисления, связывающей интеграл с первообразной, ее можно записать в виде

, для . (21)

Сумму, стоящую в правой части этого выражения, иногда называют определенной суммой по аналогии с определенным интегралом. Учитывая условие , можно переписать равенство (21) следующим образом

(22)

или при

. (23)

Для дискретных функций справедлива формула суммирования по частям, аналогичная формуле интегрирования по частям для обычных функций. Если в формуле (23) положить

, .

то

.

Это равенство можно переписать следующим образом

.

Это формула суммирования по частям.

Линейные разностные уравнения с постоянными коэффициентами.

Линейным разностным уравнением называется соотношение вида

, (1)

где ,…, – постоянные числа; – заданная дискретная функция. Разностное уравнение устанавливает связь между дискретной функцией и ее разностями. С помощью формулы

(2)

уравнение (1) можно преобразовать к виду

. (3)

При этом коэффициенты связаны с коэффициентами соотношением

. (4)

Число в уравнении (3) называется периодом разностного уравнения. Число в равенстве (1) и (3) могут не совпадать, но порядок разностного уравнения (1) определяется после его преобразования к уравнению вида (3). Таким образом, порядок разностного уравнения (1) может отличаться от порядка старшей разности.

Дискретная функция , которая обращает разностное уравнение в тождество, называется решением разностного уравнения. Далее мы будем рассматривать разностные уравнения, записанные в виде (3).

Разностное уравнение вида (3) называется неоднородным разностным уравнением порядка . Если , то уравнение (3) принимает вид

(5)

и называется однородным разностным уравнением.

Пример. Определить порядок разностного уравнения

Решение. Отметим, что исходное уравнение – однородное.

,

.

Подставим это равенство в исходное уравнение

,

.

Замена переменной дает

.

Следовательно, порядок исходного разностного уравнения равен единице.