Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
uch-posob-grachev.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.67 Mб
Скачать

Тема 1.2.4. Регулирование частоты вращения асинхронного двигателя с фазным ротором

Регулирование путем включения реостата в цепь ротора сопровождается потерей энергии в реостате, что может существенно снизить энергетические показатели электропривода. Однако имеется возможность регулировать частоту вращения таких двигателей без потерь энергии в реостате. Для этого электрическую энергию, выделяющуюся в цепи ротора при скольжении (энергию скольжения), посредством преобразовательной установки передают обратно в питающую сеть переменного тока или к вспомогательному двигателю, который сообщает дополнительную механическую энергию валу основного асинхронного двигателя. Сочетание асинхронного двигателя с преобразовательной установкой или с преобразовательной установкой и вспомогательным двигателем называют асинхронным каскадом. В настоящее время в асинхронных каскадах применяют главным образом полупроводниковые преобразователи, поэтому их часто называют вентильными каскадами.

На рис. 1.3 показана электрическая схема асинхронного вентильного каскада, в котором в цепь ротора асинхронного двигателя 2 включены два полупроводниковых преобразователя — 3 и 4. Рассматриваемая схема позволяет регулировать частоту вращения электродвигателя вниз и вверх от синхронной частоты вращения (s = 0). При s > 0 преобразователь 4 работает в выпрямительном режиме, а преобразователь 3 — в инверторном. При этом электрическая мощность скольжения Ps от ротора асинхронного двигателя передается через преобразователь 4 на преобразователь 3, который преобразует постоянный ток в переменный и возвращает энергию скольжения в питающую сеть.

При регулировании вверх от синхронной частоты (s < 0) к ротору асинхронного двигателя через преобразователи 3 и 4 подается из сети дополнительная электрическая энергия. При этом двигатель начинает вращаться с частотой выше синхронной. Частота в рассматриваемом каскаде регулируется путем изменения режима работы преобразователя 3. Выходная мощность Р2 двигателя передается рабочей машине 1. При этом, пренебрегая потерями в двигателе и принимая Рэм ≈ Р1 , определяем мощность, передаваемую рабочей машине:

Р2РмехРэм (1 - s) ≈ P1 (1 - s), (1.5)

а развиваемый на ее валу вращающий момент при P1 = Рном = const

МР2 /ω2 =P1 (1 - s)/[ω1 (1 - s)] = const. (1.6)

Рис.1.3. Функциональная схема асинхронного вентильного каскада

В настоящее время асинхронные каскады используют главным образом в электроприводах с двигателями большой мощности при широком диапазоне регулирования частоты вращения.

Находят применение также каскадные схемы (рис. 1.4 - а, б), в которых энергия скольжения через выпрямитель подводится к двигателю постоянного тока.

В схеме электрического каскада (рис. 1.4, а) двигатель постоянного тока 4, получающий от асинхронного двигателя 2 через выпрямитель 5 энергию скольжения Ps , вращает генератор переменного тока 3, который возвращает эту энергию в сеть.

Рис. 1.4 Схемы электрического каскада а) и электромеханического каскада б) с машиной постоянного тока

Эта схема аналогична схеме на рис.1.3, но применяемое электрооборудование имеет большую массу и уменьшенный КПД из-за использования вращающихся машин. Рабочей машине 1 при принятых выше идеализированных условиях передается мощность Р2Р1(l — s) при постоянном моменте.

В схеме электромеханического каскада (рис. 1.4, б) двигатель постоянного тока 4 жестко соединен с валом асинхронного двигателя 2 и поэтому энергия скольжения преобразуется в механическую.

Недостатком каскадных схем с двигателями постоянного тока является относительно высокая стоимость коллекторных двигателей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]