- •0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000Введение
- •Раздел 1
- •Тема 1.1. Двигатели переменного тока
- •Тема 1.2. Режимы работы асинхронных двигателей
- •Тема 1.2.1. Пуск асинхронных двигателей с короткозамкнутым ротором
- •Тема 1.2.2. Пуск асинхронного двигателя с фазным ротором
- •Тема 1.2.3. Выбор асинхронного двигателя для частотного регулирования
- •Тема 1.2.4. Регулирование частоты вращения асинхронного двигателя с фазным ротором
- •Тема 1.3. Перспективные регулируемые электродвигатели
- •Тема 1.4. Выбор номинальной скорости и степени защиты
- •Тема 1.5. Выбор номинальной мощности электродвигателей
- •1.5.2. Расчет мощности и выбор двигателя для кратковременной нагрузки
- •1.5.3. Расчет мощности и выбор двигателя для повторно-кратковременного режима
- •Тема 1.5.4. Проверка механической перегрузочной способности электродвигателя
- •Контрольные вопросы
- •Раздел 2 Выбор средств электропитания Тема 2.1 Выбор сечений кабелей по условиям нагревания
- •Тема 2.2 Выбор сечений кабелей по условию допустимого падения напряжения
- •Тема 2.3 Проверка по условиям пуска электродвигателей
- •Тема 2.4. Выбор сечений кабелей по условию экономической плотности тока
- •Контрольные вопросы
- •Раздел 3 электродвигатели для автономных объектов
- •Тема 3.1. Расположение блоков управления и защиты
- •Тема 3.2. Работа системы управления и защиты
- •Тема 3.3. Оценка энергоэффективности
- •Контрольные вопросы
- •Раздел 4 Выбор аппаратуры защиты Тема 4.1. Требования к выбору аппаратуры защит
- •Тема 4.2 Защита от длительной перегрузки
- •Контрольные вопросы
- •Раздел 5
- •5.1. Исходные данные
- •5.2. Методика расчета для продолжительного режима
- •5.3. Методика и расчет для повторно-кратковременного режима
- •Заключение
- •Оглавление
- •Выбор электродвигателей, средств электропитания, пуска и защиты
- •443100, Г. Самара, Молодогвардейская, 244. Главный корпус
- •443100, Г. Самара, ул. Молодогвардейская, 244. Корпус №8
Тема 1.2.4. Регулирование частоты вращения асинхронного двигателя с фазным ротором
Регулирование путем включения реостата в цепь ротора сопровождается потерей энергии в реостате, что может существенно снизить энергетические показатели электропривода. Однако имеется возможность регулировать частоту вращения таких двигателей без потерь энергии в реостате. Для этого электрическую энергию, выделяющуюся в цепи ротора при скольжении (энергию скольжения), посредством преобразовательной установки передают обратно в питающую сеть переменного тока или к вспомогательному двигателю, который сообщает дополнительную механическую энергию валу основного асинхронного двигателя. Сочетание асинхронного двигателя с преобразовательной установкой или с преобразовательной установкой и вспомогательным двигателем называют асинхронным каскадом. В настоящее время в асинхронных каскадах применяют главным образом полупроводниковые преобразователи, поэтому их часто называют вентильными каскадами.
На рис. 1.3 показана электрическая схема асинхронного вентильного каскада, в котором в цепь ротора асинхронного двигателя 2 включены два полупроводниковых преобразователя — 3 и 4. Рассматриваемая схема позволяет регулировать частоту вращения электродвигателя вниз и вверх от синхронной частоты вращения (s = 0). При s > 0 преобразователь 4 работает в выпрямительном режиме, а преобразователь 3 — в инверторном. При этом электрическая мощность скольжения Ps от ротора асинхронного двигателя передается через преобразователь 4 на преобразователь 3, который преобразует постоянный ток в переменный и возвращает энергию скольжения в питающую сеть.
При регулировании вверх от синхронной частоты (s < 0) к ротору асинхронного двигателя через преобразователи 3 и 4 подается из сети дополнительная электрическая энергия. При этом двигатель начинает вращаться с частотой выше синхронной. Частота в рассматриваемом каскаде регулируется путем изменения режима работы преобразователя 3. Выходная мощность Р2 двигателя передается рабочей машине 1. При этом, пренебрегая потерями в двигателе и принимая Рэм ≈ Р1 , определяем мощность, передаваемую рабочей машине:
Р2 ≈ Рмех ≈ Рэм (1 - s) ≈ P1 (1 - s), (1.5)
а развиваемый на ее валу вращающий момент при P1 = Рном = const
М ≈ Р2 /ω2 =P1 (1 - s)/[ω1 (1 - s)] = const. (1.6)
|
Рис.1.3. Функциональная схема асинхронного вентильного каскада |
В настоящее время асинхронные каскады используют главным образом в электроприводах с двигателями большой мощности при широком диапазоне регулирования частоты вращения.
Находят применение также каскадные схемы (рис. 1.4 - а, б), в которых энергия скольжения через выпрямитель подводится к двигателю постоянного тока.
В схеме электрического каскада (рис. 1.4, а) двигатель постоянного тока 4, получающий от асинхронного двигателя 2 через выпрямитель 5 энергию скольжения Ps , вращает генератор переменного тока 3, который возвращает эту энергию в сеть.
|
Рис. 1.4 Схемы электрического каскада а) и электромеханического каскада б) с машиной постоянного тока |
Эта схема аналогична схеме на рис.1.3, но применяемое электрооборудование имеет большую массу и уменьшенный КПД из-за использования вращающихся машин. Рабочей машине 1 при принятых выше идеализированных условиях передается мощность Р2 ≈ Р1(l — s) при постоянном моменте.
В схеме электромеханического каскада (рис. 1.4, б) двигатель постоянного тока 4 жестко соединен с валом асинхронного двигателя 2 и поэтому энергия скольжения преобразуется в механическую.
Недостатком каскадных схем с двигателями постоянного тока является относительно высокая стоимость коллекторных двигателей.
