- •В. В. Горбачев концепции современного естествознания
- •Глава 1
- •Владимир Иванович Вернадский
- •1.1.1. Программа Платона
- •1.1.2. Представления Аристотеля
- •1.1.3. Модель Демокрита
- •.1.2. Проблемы естествознания на пути познания мира
- •1.2.1.Физический рационализм
- •1.2.2. Методы познания
- •1.2.3. Целостное восприятие мира
- •1.2.4. Физика и восточный мистицизм
- •1.2.5. Взаимосвязь естественных и гуманитарных наук
- •Верп ер Гейзенберг
- •1.2.6. Синергетические представления
- •1.2.7. Универсальный принцип естествознания — принцип дополнительности Бора
- •Нильс Бор
- •Глава 2 механика дискретных объектов я. Смородстнский
- •2.1. Трехмерность пространства
- •2.2. Пространство и время
- •Исаак Ньютон
- •2.3. Особенности механики Ньютона
- •2.4. Движение в механике
- •2.5. Законы Ньютона — Галилея
- •2.6. Законы сохранения
- •2.7. Принципы оптимальности
- •2.8. Механическая картина мира
- •Глава 3 физика полей
- •3.1. Определение понятия поля
- •3.2. Законы Фарадея — Максвелла для электромагнетизма
- •3.3. Электромагнитное поле
- •3.4. Гравитационное поле
- •3.5. Электромагнитная картина мира
- •4.1. Физические начала специальной теории относительности (сто)
- •4.1.1. Постулаты а. Эйнштейна в сто
- •4.1.2. Принцип относительности г. Галилея
- •4.1.3. Теория относительности и инвариантность времени
- •4.1.4. Постоянство скорости света
- •4.1.5. Преобразования г. Лоренца
- •4.1.6. Изменение длины и длительности времени в сто
- •4.1.7. «Парадокс близнецов»
- •4.1.8. Изменение массы в сто
- •4.2. Общая теория относительности (ото)
- •4.2.1. Постулаты ото
- •4.2.2. Экспериментальная проверка ото
- •4.2.3. Гравитация и искривление пространства
- •Глава 5
- •5.1. Описание процессов в микромире
- •5.2. Необходимость введения квантовой механики
- •5.3. Гипотеза Планка
- •Макс Планк
- •5.4. Измерения в квантовой механике
- •Вольфганг Паули
- •5.6. Квантовая механика и обратимость времени
- •5.7. Квантовая электродинамика
- •Глава 6 физика вселенной с. Вайнберг
- •6.1. Космологическая модель а. Эйнштейна — а.А. Фридмана
- •6.2. Другие модели происхождения Вселенной
- •6.2.1. Модель Большого Взрыва
- •Георгий Антонович Гамое
- •6.2.2. Реликтовое излучение
- •6.2.3. Расширяется или сжимается Вселенная?
- •6.2.4. Сценарий развития Вселенной после Большого Взрыва
- •6.3. Современные представления об элементарных частицах как первооснове строения материи Вселенной
- •6.3.1. Классификация элементарных частиц
- •6.3.2. Кварковая модель
- •6.4. Фундаментальные взаимодействия и мировые константы
- •6.4.1. Мировые константы
- •6.4.2. Фундаментальные взаимодействия и их роль в природе
- •6.4.3. Из чего же состоит вещество Вселенной?
- •6.4.4. Черные дыры
- •6.5. Модель единого физического поля и многомерность пространства—времени
- •6.5.1. Возможность многомерности пространства
- •6.6. Устойчивость Вселенной и антропный принцип
- •6.6.1. Множественность миров
- •6.6.2. Иерархичность структуры Вселенной
- •10 Рис. 6.6. Масштабы Вселенной
- •6.7. Антивещество во Вселенной и антигалактики
- •6.8. Механизм образования и эволюции звезд
- •6.8.1. Протон-протонный цикл
- •6.8.2. Углеродо-азотный цикл
- •6.8.3. Эволюция звезд
- •6.8.4. Пульсары
- •6.8.5. Квазары
- •Глава 7
- •7.1. Неравновесная термодинамика и синергетика
- •7.2. Динамика хаоса и порядка
- •7.3. Модель э. Лоренца
- •7.4. Диссипативные структуры
- •7.5. Ячейки Бенара
- •7.6. Реакции Белоусова — Жаботинского
- •7.7. Динамический хаос
- •7.8. Фазовое пространство
- •7.9. Аттракторы
- •7.10. Режим с обострением [
- •7.11. Модель Пуанкаре описания изменения состояния системы
- •7.12. Динамические неустойчивости
- •7.13. Изменение энергии при эволюции системы
- •7.14. Гармония хаоса и порядка и «золотое сечение»
- •Леонардо да Винчи
- •7.15. Открытые системы
- •7.16. Принцип производства минимума энтропии
- •Глава 8
- •8.1. Симметрия и законы сохранения
- •8.2. Симметрия—асимметрия
- •8.3. Закон сохранения электрического заряда
- •8.4. Зеркальная симметрия
- •8.5. Другие виды симметрии
- •8.6. Хиральность живой и неживой природы
- •8.7. Симметрия и энтропия
- •Глава 9 современная естественно-научная картина мира с позиции физики р. Фейнман
- •9.1. Классификация механик
- •9.2. Современная физическая картина мира
- •Часть вторая физика живого и эволюция природы и общества
- •Глава 10
- •Глава 11
- •11.1. Термодинамические особенности развития живых систем
- •11.1.1. Роль энтропии для живых организмов
- •11.1.2. Неустойчивость как фактор развития живого
- •11.2. Энергетический подход к описанию живого
- •11.2.1. Устойчивое неравновесие
- •11.3.1. Иерархия уровней организации живого
- •11.3.2. Метод Фибоначчи как фактор гармонической самоорганизации
- •11.3.3. Физический и биологический методы изучения природы живого
- •11.3.4. Антропный принцип в физике живого
- •11.3.5. Физическая эволюция л. Больцмана и биологическая эволюция ч. Дарвина
- •11.4.1. Физические модели в биологии
- •11.4.2. Физические факторы развития живого
- •11.5. Пространство и время для живых организмов
- •11.5.1. Связь пространства и энергии для живого
- •11.5.2. Биологическое время живой системы
- •11.5.3. Психологическое время живых организмов
- •11.6. Энтропия и информация в живых системах
- •11.6.1. Ценность информации
- •11.6.2. Кибернетический подход к описанию живого
- •11.6.3. Роль физических законов в понимании живого
- •Глава 12
- •12.1. От атомов к протожизни
- •12.1.1. Гипотезы происхождения жизни
- •12.1.2. Необходимые факторы возникновения жизни
- •12.1.3. Теория абиогенного происхождения жизни а.И. Опарина
- •12.1.4. Гетеротрофы и автотрофы
- •12.2.2. Аминокислоты
- •12.2.3. Теория химической эволюции в биогенезе
- •12.2.4. Теория молекулярной самоорганизации м. Эйгена
- •12.2.5. Циклическая организация химических реакций и гиперциклы
- •12. 3. Биохимические составляющие живого вещества
- •12.3.1. Молекулы живой природы
- •12.3.2. Мономеры и макромолекулы
- •12.3.3. Белки
- •12.3.4. Нуклеиновые кислоты
- •12.3.5. Углеводы
- •12.3.6. Липиды
- •12.3.7. Роль воды для живых организмов
- •12.4. Клетка как элементарная частица молекулярной биологии
- •12.4.1. Строение клетки
- •12.4.2. Процессы в клетке
- •12.4.4. Фотосинтез
- •12.4.5. Деление клеток и образование организма
- •12.5. Роль асимметрии в возникновении живого
- •12.5.1. Оптическая активность вещества и хиральность
- •12.5.2. Гомохиральность и самоорганизация в живых организмах
- •Глава 13 физические принципы воспроизводства и развития живых систем
- •13.1. Информационные молекулы наследственности
- •13.1.2. Гены и квантовый мир
- •13.2. Воспроизводство и наследование признаков
- •13.2.2. Законы генетики г. Менделя
- •13.2.3. Хромосомная теория наследственности
- •13.3. Процессы мутагенеза и передача наследственной информации
- •13.3.1. Мутации и радиационный мутагенез
- •13.3.2. Мутации и развитие организма
- •13.4. Матричный принцип синтеза информационных макромолекул и молекулярная генетик
- •13.4.1. Передача наследственной информации через репликации
- •13.4.2. Матричный синтез путем конвариантной редупликации
- •13.4.3. Транскрипция *
- •13.4.6. Новый механизм передачи наследственной информации и прионные болезни
- •Глава 14 физическое понимание эволюционного и индивидуального развития организмов Отличить живое от неживого легче всего на рынке: за живую и дохлую лошадь дают разную цену.
- •14.1. Онтогенез и филогенез. Онтогенетический и популяционный уровни организации жизни
- •14.1.1. Закон Геккеля для онтогенеза и филогенеза
- •14.1.2. Онтогенетический уровень жизни
- •14.1.3. Популяции и лопуляционно-видовой уровень живого
- •14.2. Физическое представление эволюции
- •14.2.1. Синтетическая теория эволюции
- •14.2.4. Живой организм в индивидуальном и историческом развитии
- •14.2.5. Геологическая эволюция и общая схема эволюции Земли по н.Н. Моисееву
- •14.3. Аксиомы биологии
- •14.3.1. Первая аксиома
- •14.3.3. Третья аксиома
- •14.3.4. Четвертая аксиома
- •14.3.5. Физические представления аксиом биологии
- •14.4. Признаки живого и определения жизни
- •14.4.1. Совокупность признаков живого
- •14.4.2. Определения жизни
- •14.5. Физическая модель демографического развития с.П. Капиц
- •Глава 15 физические и информационные поля биологических структур
- •15.1. Физические поля и излучения функционирующего организма человека
- •15.1.1. Электромагнитные поля и излучения живого организма
- •15.1.2. Тепловое и другие виды излучений
- •15.2. Механизм взаимодействия излучений человека с окружающей средой
- •15.2.1. Электромагнитное и ионизирующее излучения
- •15.2.2. Возможности медицинской диагностики и лечения на основе излучений из организма человека
- •15.3.1. Физические процессы передачи информационного сигнала в живом организме
- •15.3.2. Физическая основа памяти
- •15.3.3. Человеческий мозг и компьютер
- •Глава 16 физические аспекты биосферы и основы экологии
- •16.1. Структурная организованность биосферы
- •16.1.1. Биоценозы
- •16.1.2. Геоценозы и биогеоценозы. Экосистемы
- •16.1.4. Биологический круговорот веществ в природе
- •16.1.5. Роль энергии в эволюции
- •16.2.1. Живое вещество
- •16.2.2. Биогеохимические принципы в.И. Вернадского
- •16.3.1. Основные этапы эволюции биосферы
- •16.3.3. Преобразование биосферы в ноосферу
- •16.4. Физические факторы влияния Космоса на земные процессы
- •16.4.1. Связь Космоса с Землей
- •Александр Леонидович Чижевский
- •16.5.1. Увеличение антропогенной нагрузки на окружающую среду
- •16.6.1. Оценки устойчивости биосферы
- •16.6.2. Концепция устойчивого развития и необходимость экологического образования
- •Часть третья концепции естествознания в гуманитарных науках
- •Глава 17 общие естественнонаучные принципы и механизмы в эволюционной картине мира
- •17.1. Основные принципы универсального эволюционизма
- •17.2. Универсальный эволюционизм и методология применения дарвиновской триады в эволюции сложных систем любой природы
- •17.3. Универсальный эволюционизм и синергетика
- •17.4. Современный рационализм и универсальный эволюционизм
- •17.5. Физическое понимание теории пассионарности л. Н. Гумилева
- •Глава 18
- •18.1. Возникновение информационного общества
- •18.2. Глобализация и устойчивое развитие
- •18.3. Социосинергетика
- •18.4. Цивилизация и синергетика
- •18.5. Глобализация и синергетический прогноз развития человечества
- •Глава 19
- •19.1. Физические модели самоорганизации в экономике
- •19.2. Экономическая модель длинных волн н. Д. Кондратьева
- •19.3, Обратимость и необратимость процессов в экономике
- •19.4. Синергетические представления устойчивости
- •19.5. Физическое моделирование рынка
- •19.7. Модель колебательных процессов в экономике
- •19.8. Эволюционный менеджмент
- •Заключение эволюционно-синергетическая парадигма: от целостного естествознания к целостной культуре
- •1. Ньютоновские представления о времени и пространстве20-
- •3. Золотая пропорция как критерий гармонии22
- •4. Синергетическая парадигма23
- •5. Роль воды в природе и живых организмах24
- •6. Влияние радиационных воздействий на экологию25
- •Концепции современного естествознания
11.6.1. Ценность информации
По мере развития кибернетики как науки об управлении процессами в неживой и живой природе выяснилось, что имеет смысл не просто количество информации, а ее ценность. Полезный информативный сигнал должен выделиться из информационного шума, а шум — это максимальное количество равновесных состояний, т.е. максимум энтропии, а минимум энтропии соответствует максимуму информации, и отбор информации из шума — это процесс рождения порядка из хаоса. Поэтому уменьшение однообразия (появление белой вороны в стае черных) будет означать уменьшение энтропии, но повышение информативности о такой системе (стае). За получение информации нужно «платить» увеличением энтропии, ее нельзя получить бесплатно! Заметим, что закон необходимого разнообразия, присущий живой природе, вытекает из теорем К. Шенона. Этот закон был сформулирован У. Эшби (1915—1985): «...информацию невозможно передать в большем количестве, чем это позволяет сделать количество разнообразия».
Примером соотношения информации и энтропии является возникновение в неживой природе упорядоченного кристалла из расплава. При этом энтропия выросшего кристалла уменьшается, но возрастает информация о расположении атомов в узлах кристаллической решетки. Заметим, что объем информации комплементарен объему энтропии, так как они обратно пропорциональны, и поэтому информационный подход к объяснению живого не дает нам больше понимания, чем термодинамический.
Необходимо учитывать кинетику образования диссипативных структур и ценность информации. Ценность информации как ее качество определяют из соотношения
F=lg (/>//><,),
где Pq и Р — вероятности достижения какой-то цели до и после получения информации.
Ценность информации может быть положительной, когда Р > Pq, и отрицательной, если Р0 > Р. В последнем случае она является дезинформацией. Д. С. Чернявский [191] приводит такой пример практического смысла ценности информации. Допустим, нам необходимо успеть на поезд. Если пользоваться расписанием движения поездов, то вероятность достижения цели (успеть на поезд) сильно повышается, Р ~ 1. В этом случае ценность информации (расписания) положительна. Однако если расписание устарело или по какой-то причине нарушено, то вероятность достижения цели понижается и Р < Pq. В этом случае ценность информации отрицательна. Может быть и случай, когда информация вообще не может стать ценной: например, когда наборщик в тексте переставил буквы так, что текст потерял всякий смысл. Количество информации сохранилось, но ценность ее для читателя стала равной нулю.
Информация обычно измеряется в битах; бит — единица измерения в двоичной системе счисления. Для простейшего случая, например — выбора между двумя вариантами w = 2 и р = ^,
имеем / = lg2 2 = 1 бит. Оказалось, что живой организм по информативности значительно превосходит современные ЭВМ (/- 102 — 104 бит), клетка — 109 бит, а в целом живой организм может содержать до 1019 мегабит информации. Для примера, наш алфавит, состоящий из 32 = 25 букв, в упорядоченном тексте содержит информацию всего I = lg2 25 = 5 бит-
Одна стандартная страница информации содержит сотни бит. Человек способен воспринимать 25 бит в секунду, центральная нервная система ~ 30—40 бит в секунду. Однако по некоторым каналам эта способность значительно выше: по зрительному каналу 107 — 108, по слуховому — 103 _ ю4 бит в секунду.
Сложность кибернетической системы, по фон Нейману, — это число компонент, образующих систему. В многокомпонентных системах эту сложность в ряде случаев труднее описать, чем изготовить саму систему. Сложность в битах определяется как минимальное число двоичных знаков, которые содержат всю информацию об объекте, достаточную для его воспроизведения. Однако понятие ценности информации шире понятия сложности и для живых организмов играет большую роль, чем усложнение системы, поскольку для них важнее не принцип возрастания сложности, а принцип возрастания ценности информации.
Одной из существенных особенностей живой системы является способность создавать новую информацию и отбирать наиболее ценную для него в процессе жизнедеятельности. Чем более ценная информация создается в системе и чем выше критерий ее отбора, тем выше эта система находится на лестнице биологической эволюции.
Ценность информации, особенно для живых организмов, зависит от цели, с которой она используется. Мы уже отмечали (п. 11.2.1), что стремление выжить как главная цель живых объектов лежит в основе всей эволюции биосферы. Это относится как к высшим, так и к простейшим организмам. Целью в живой природе можно считать совокупность поведенческих реакций, способствующих выживанию и сохранению организмов в борьбе за существование. У высших организмов это может быть осознанно, но это не означает, что цель отсутствует. Поэтому для описания живой природы ценность информации — понятие содержательное и связано это понятие с важным свойством живой природы — способностью живых организмов к целеполаганию.
Согласно Д. С. Чернявскому, для неживых объектов целью можно было считать стремление системы к аттрактору как к неустойчивому конечному состоянию. Однако в условиях неустойчивого развития аттракторов может быть много, и это позволяет считать, что ценной информации для таких объектов неживой природы нет. Может быть, поэтому в классической физике понятие информации для описания процессов в неживой природе не использовалось: она развивалась в соответствии с законами природы, и этого было достаточно для описания процессов на языке физики. Можно даже сказать, что в неживой природе если есть цель, то нет информации, а если есть информация, то нет цели. Вероятно, на этом основании можно провести разграничение неживых объектов от живых, для которых понятия цели, информации и ее ценности являются конструктивными и содержательными. Поэтому наряду с другими рассмотренными признаками развития самоорганизующихся систем критерием биологической эволюции является возрастание ценности информации, рождающейся в системе и передаваемой затем живым организмом генетически следующим поколениям.
Необходимая для развития живой системы информация возникает и приобретает ценность путем отбора, согласно которому благоприятные индивидуальные изменения сохраняются, а вредные уничтожаются. В этом смысле ценность информации — это перевод на язык синергетики дарвиновской триады наследственности, изменчивости и естественного отбора. Происходит как бы самоорганизация необходимой информации. Это позволит через это понятие связать дарвиновскую теорию эволюции, классическую теорию информации и молекулярную биологию.
Закономерности биологической эволюции в свете теории информации будут определяться тем, как реализуется в процессе развития живого принцип максимума информации и ее ценности. Следует заметить, что «эффект границы», привлекающий все живое, о котором мы уже говорили, подтверждается тем, что граница более информативна.
