- •В. В. Горбачев концепции современного естествознания
- •Глава 1
- •Владимир Иванович Вернадский
- •1.1.1. Программа Платона
- •1.1.2. Представления Аристотеля
- •1.1.3. Модель Демокрита
- •.1.2. Проблемы естествознания на пути познания мира
- •1.2.1.Физический рационализм
- •1.2.2. Методы познания
- •1.2.3. Целостное восприятие мира
- •1.2.4. Физика и восточный мистицизм
- •1.2.5. Взаимосвязь естественных и гуманитарных наук
- •Верп ер Гейзенберг
- •1.2.6. Синергетические представления
- •1.2.7. Универсальный принцип естествознания — принцип дополнительности Бора
- •Нильс Бор
- •Глава 2 механика дискретных объектов я. Смородстнский
- •2.1. Трехмерность пространства
- •2.2. Пространство и время
- •Исаак Ньютон
- •2.3. Особенности механики Ньютона
- •2.4. Движение в механике
- •2.5. Законы Ньютона — Галилея
- •2.6. Законы сохранения
- •2.7. Принципы оптимальности
- •2.8. Механическая картина мира
- •Глава 3 физика полей
- •3.1. Определение понятия поля
- •3.2. Законы Фарадея — Максвелла для электромагнетизма
- •3.3. Электромагнитное поле
- •3.4. Гравитационное поле
- •3.5. Электромагнитная картина мира
- •4.1. Физические начала специальной теории относительности (сто)
- •4.1.1. Постулаты а. Эйнштейна в сто
- •4.1.2. Принцип относительности г. Галилея
- •4.1.3. Теория относительности и инвариантность времени
- •4.1.4. Постоянство скорости света
- •4.1.5. Преобразования г. Лоренца
- •4.1.6. Изменение длины и длительности времени в сто
- •4.1.7. «Парадокс близнецов»
- •4.1.8. Изменение массы в сто
- •4.2. Общая теория относительности (ото)
- •4.2.1. Постулаты ото
- •4.2.2. Экспериментальная проверка ото
- •4.2.3. Гравитация и искривление пространства
- •Глава 5
- •5.1. Описание процессов в микромире
- •5.2. Необходимость введения квантовой механики
- •5.3. Гипотеза Планка
- •Макс Планк
- •5.4. Измерения в квантовой механике
- •Вольфганг Паули
- •5.6. Квантовая механика и обратимость времени
- •5.7. Квантовая электродинамика
- •Глава 6 физика вселенной с. Вайнберг
- •6.1. Космологическая модель а. Эйнштейна — а.А. Фридмана
- •6.2. Другие модели происхождения Вселенной
- •6.2.1. Модель Большого Взрыва
- •Георгий Антонович Гамое
- •6.2.2. Реликтовое излучение
- •6.2.3. Расширяется или сжимается Вселенная?
- •6.2.4. Сценарий развития Вселенной после Большого Взрыва
- •6.3. Современные представления об элементарных частицах как первооснове строения материи Вселенной
- •6.3.1. Классификация элементарных частиц
- •6.3.2. Кварковая модель
- •6.4. Фундаментальные взаимодействия и мировые константы
- •6.4.1. Мировые константы
- •6.4.2. Фундаментальные взаимодействия и их роль в природе
- •6.4.3. Из чего же состоит вещество Вселенной?
- •6.4.4. Черные дыры
- •6.5. Модель единого физического поля и многомерность пространства—времени
- •6.5.1. Возможность многомерности пространства
- •6.6. Устойчивость Вселенной и антропный принцип
- •6.6.1. Множественность миров
- •6.6.2. Иерархичность структуры Вселенной
- •10 Рис. 6.6. Масштабы Вселенной
- •6.7. Антивещество во Вселенной и антигалактики
- •6.8. Механизм образования и эволюции звезд
- •6.8.1. Протон-протонный цикл
- •6.8.2. Углеродо-азотный цикл
- •6.8.3. Эволюция звезд
- •6.8.4. Пульсары
- •6.8.5. Квазары
- •Глава 7
- •7.1. Неравновесная термодинамика и синергетика
- •7.2. Динамика хаоса и порядка
- •7.3. Модель э. Лоренца
- •7.4. Диссипативные структуры
- •7.5. Ячейки Бенара
- •7.6. Реакции Белоусова — Жаботинского
- •7.7. Динамический хаос
- •7.8. Фазовое пространство
- •7.9. Аттракторы
- •7.10. Режим с обострением [
- •7.11. Модель Пуанкаре описания изменения состояния системы
- •7.12. Динамические неустойчивости
- •7.13. Изменение энергии при эволюции системы
- •7.14. Гармония хаоса и порядка и «золотое сечение»
- •Леонардо да Винчи
- •7.15. Открытые системы
- •7.16. Принцип производства минимума энтропии
- •Глава 8
- •8.1. Симметрия и законы сохранения
- •8.2. Симметрия—асимметрия
- •8.3. Закон сохранения электрического заряда
- •8.4. Зеркальная симметрия
- •8.5. Другие виды симметрии
- •8.6. Хиральность живой и неживой природы
- •8.7. Симметрия и энтропия
- •Глава 9 современная естественно-научная картина мира с позиции физики р. Фейнман
- •9.1. Классификация механик
- •9.2. Современная физическая картина мира
- •Часть вторая физика живого и эволюция природы и общества
- •Глава 10
- •Глава 11
- •11.1. Термодинамические особенности развития живых систем
- •11.1.1. Роль энтропии для живых организмов
- •11.1.2. Неустойчивость как фактор развития живого
- •11.2. Энергетический подход к описанию живого
- •11.2.1. Устойчивое неравновесие
- •11.3.1. Иерархия уровней организации живого
- •11.3.2. Метод Фибоначчи как фактор гармонической самоорганизации
- •11.3.3. Физический и биологический методы изучения природы живого
- •11.3.4. Антропный принцип в физике живого
- •11.3.5. Физическая эволюция л. Больцмана и биологическая эволюция ч. Дарвина
- •11.4.1. Физические модели в биологии
- •11.4.2. Физические факторы развития живого
- •11.5. Пространство и время для живых организмов
- •11.5.1. Связь пространства и энергии для живого
- •11.5.2. Биологическое время живой системы
- •11.5.3. Психологическое время живых организмов
- •11.6. Энтропия и информация в живых системах
- •11.6.1. Ценность информации
- •11.6.2. Кибернетический подход к описанию живого
- •11.6.3. Роль физических законов в понимании живого
- •Глава 12
- •12.1. От атомов к протожизни
- •12.1.1. Гипотезы происхождения жизни
- •12.1.2. Необходимые факторы возникновения жизни
- •12.1.3. Теория абиогенного происхождения жизни а.И. Опарина
- •12.1.4. Гетеротрофы и автотрофы
- •12.2.2. Аминокислоты
- •12.2.3. Теория химической эволюции в биогенезе
- •12.2.4. Теория молекулярной самоорганизации м. Эйгена
- •12.2.5. Циклическая организация химических реакций и гиперциклы
- •12. 3. Биохимические составляющие живого вещества
- •12.3.1. Молекулы живой природы
- •12.3.2. Мономеры и макромолекулы
- •12.3.3. Белки
- •12.3.4. Нуклеиновые кислоты
- •12.3.5. Углеводы
- •12.3.6. Липиды
- •12.3.7. Роль воды для живых организмов
- •12.4. Клетка как элементарная частица молекулярной биологии
- •12.4.1. Строение клетки
- •12.4.2. Процессы в клетке
- •12.4.4. Фотосинтез
- •12.4.5. Деление клеток и образование организма
- •12.5. Роль асимметрии в возникновении живого
- •12.5.1. Оптическая активность вещества и хиральность
- •12.5.2. Гомохиральность и самоорганизация в живых организмах
- •Глава 13 физические принципы воспроизводства и развития живых систем
- •13.1. Информационные молекулы наследственности
- •13.1.2. Гены и квантовый мир
- •13.2. Воспроизводство и наследование признаков
- •13.2.2. Законы генетики г. Менделя
- •13.2.3. Хромосомная теория наследственности
- •13.3. Процессы мутагенеза и передача наследственной информации
- •13.3.1. Мутации и радиационный мутагенез
- •13.3.2. Мутации и развитие организма
- •13.4. Матричный принцип синтеза информационных макромолекул и молекулярная генетик
- •13.4.1. Передача наследственной информации через репликации
- •13.4.2. Матричный синтез путем конвариантной редупликации
- •13.4.3. Транскрипция *
- •13.4.6. Новый механизм передачи наследственной информации и прионные болезни
- •Глава 14 физическое понимание эволюционного и индивидуального развития организмов Отличить живое от неживого легче всего на рынке: за живую и дохлую лошадь дают разную цену.
- •14.1. Онтогенез и филогенез. Онтогенетический и популяционный уровни организации жизни
- •14.1.1. Закон Геккеля для онтогенеза и филогенеза
- •14.1.2. Онтогенетический уровень жизни
- •14.1.3. Популяции и лопуляционно-видовой уровень живого
- •14.2. Физическое представление эволюции
- •14.2.1. Синтетическая теория эволюции
- •14.2.4. Живой организм в индивидуальном и историческом развитии
- •14.2.5. Геологическая эволюция и общая схема эволюции Земли по н.Н. Моисееву
- •14.3. Аксиомы биологии
- •14.3.1. Первая аксиома
- •14.3.3. Третья аксиома
- •14.3.4. Четвертая аксиома
- •14.3.5. Физические представления аксиом биологии
- •14.4. Признаки живого и определения жизни
- •14.4.1. Совокупность признаков живого
- •14.4.2. Определения жизни
- •14.5. Физическая модель демографического развития с.П. Капиц
- •Глава 15 физические и информационные поля биологических структур
- •15.1. Физические поля и излучения функционирующего организма человека
- •15.1.1. Электромагнитные поля и излучения живого организма
- •15.1.2. Тепловое и другие виды излучений
- •15.2. Механизм взаимодействия излучений человека с окружающей средой
- •15.2.1. Электромагнитное и ионизирующее излучения
- •15.2.2. Возможности медицинской диагностики и лечения на основе излучений из организма человека
- •15.3.1. Физические процессы передачи информационного сигнала в живом организме
- •15.3.2. Физическая основа памяти
- •15.3.3. Человеческий мозг и компьютер
- •Глава 16 физические аспекты биосферы и основы экологии
- •16.1. Структурная организованность биосферы
- •16.1.1. Биоценозы
- •16.1.2. Геоценозы и биогеоценозы. Экосистемы
- •16.1.4. Биологический круговорот веществ в природе
- •16.1.5. Роль энергии в эволюции
- •16.2.1. Живое вещество
- •16.2.2. Биогеохимические принципы в.И. Вернадского
- •16.3.1. Основные этапы эволюции биосферы
- •16.3.3. Преобразование биосферы в ноосферу
- •16.4. Физические факторы влияния Космоса на земные процессы
- •16.4.1. Связь Космоса с Землей
- •Александр Леонидович Чижевский
- •16.5.1. Увеличение антропогенной нагрузки на окружающую среду
- •16.6.1. Оценки устойчивости биосферы
- •16.6.2. Концепция устойчивого развития и необходимость экологического образования
- •Часть третья концепции естествознания в гуманитарных науках
- •Глава 17 общие естественнонаучные принципы и механизмы в эволюционной картине мира
- •17.1. Основные принципы универсального эволюционизма
- •17.2. Универсальный эволюционизм и методология применения дарвиновской триады в эволюции сложных систем любой природы
- •17.3. Универсальный эволюционизм и синергетика
- •17.4. Современный рационализм и универсальный эволюционизм
- •17.5. Физическое понимание теории пассионарности л. Н. Гумилева
- •Глава 18
- •18.1. Возникновение информационного общества
- •18.2. Глобализация и устойчивое развитие
- •18.3. Социосинергетика
- •18.4. Цивилизация и синергетика
- •18.5. Глобализация и синергетический прогноз развития человечества
- •Глава 19
- •19.1. Физические модели самоорганизации в экономике
- •19.2. Экономическая модель длинных волн н. Д. Кондратьева
- •19.3, Обратимость и необратимость процессов в экономике
- •19.4. Синергетические представления устойчивости
- •19.5. Физическое моделирование рынка
- •19.7. Модель колебательных процессов в экономике
- •19.8. Эволюционный менеджмент
- •Заключение эволюционно-синергетическая парадигма: от целостного естествознания к целостной культуре
- •1. Ньютоновские представления о времени и пространстве20-
- •3. Золотая пропорция как критерий гармонии22
- •4. Синергетическая парадигма23
- •5. Роль воды в природе и живых организмах24
- •6. Влияние радиационных воздействий на экологию25
- •Концепции современного естествознания
9.2. Современная физическая картина мира
Подведем теперь краткий итог рассмотренных выше идей современной естественно-научной картины мира на основе постнеклассических физических представлений или той физики, которая, по терминологии И. Пригожина, является физикой существующего: Современная естественно-научная картина отличается более фундаментальным уровнем рассмотрения явлений природы. Современные физические теории имеют дело с самыми основными понятиями, свойствами, состояниями природы, такими, как время, пространство, масса, заряд, поле, вакуум и т.д. Создана теория атома, объясняющая стабильность атомов, периодичность свойств химических элементов, образование химических связей различных видов, объясняющих многочисленные и разнообразные физические и химические явления. Установлено строение атома и составляющих его частиц. В итоге сформулирована последовательная концепция атомистического строения материи, согласно которой все сущее состоит из 12 фундаментальных фермионов: 6 кварков различных ароматов и цветов и 6 лептонов с различными лептонными зарядами. Все многообразие природных явлений объясняется взаимопревращением этих частиц и их взаимодействием, которые сводятся к четырем видам фундаментальных взаимодействий — гравитационному, сильному, слабому и электромагнитному. Предполагают, что переносчиками взаимодействия (носителями полей) являются частицы — фундаментальные бозоны, фотоны, гравитоны. Предпринимают попытки объединить эти взаимодействия в одно. Важно также, что результаты исследования микромира дают возможность по-новому осмыслить процессы мегамира — рождение и эволюцию звезд, галактик, всей Вселенной. Считается, что в окрестностях точки Большого Взрыва при Т> 1032 К эти все взаимодействия были объединены.
Другим существенным моментом является то, что современная естественно-научная картина Мира основана на фундаментальном вероятностном принципе обобщения закономерностей. Этот принцип, вытекающий из квантовой физики, можно распространять и на гуманитарный подход к изучению мира, т.е. использовать физические модели, в том числе статистические физические модели, для описания природы, социума и общества в целом. При этом природа, общество, Вселенная рассматриваются в развитии, во взаимодействии их сущностей. Так, ОТО связала пространство—время, квантовая теория доказала условность разделения вещества и поля. Выяснилась тесная взаимосвязь таких свойств объектов природы, как симметрия — асимметрия, хаос и порядок, дискретность и континуальность. Классическое естествознание на разных этапах развития картин мира рассматривало физические модели описания объектов как замкнутых систем с линейными зависимостями описывающих их параметров. В современной картине мира рассматривают уже более распространенные в природе открытые системы, которые обмениваются с окружающей средой веществом, энергией, информацией. Для них характерны разнообразие, неустойчивости эволюции, нелинейные соотношения, процессы самоорганизации. Синергетический подход применим к объяснению самых разнообразных явлений в мире. Выяснилось, что нелинейность присуща не только чисто физическим процессам, но и большинству других — биологических, психологических, социальных, экологических, демографических, политических, экономических и др.
Поэтому в синергетической картине мира с единых позиций можно объяснить большинство глобальных процессов, используя нелинейность связей в различных моделях и системах. Использование методов и понятий синергетики позволяет прогнозировать эволюцию систем различной природы через процессы самоорганизации материи. Понятия бифуркаций, возникновения новых упорядоченных структур из хаоса и возможность управления процессами через малые управляющие параметры дают возможность более адекватно рассматривать природу самых разнообразных явлений, а в социально-экономических проблемах принимать правильные решения. Новые структуры возникают в точках бифуркации, когда еще не ясно, куда будет двигаться система, но тенденцию можно спрогнозирорать или проанализировать выбором решений и путей развития. Само научное знание развивается так же, как открытая система, — по законам самоорганизации. Постнеклассическое естествознание рассматривает мир как процесс, и в синергетической картине он представляется глобальной иерархической самоорганизующейся системой.
Окружающий человека мир, безграничный в пространстве и времени, дает грандиозную картину мироздания, в которой все связано со всем. Жизнь природы, Земли, Вселенной, физическая и духовная жизнь человека, жизнь и эволюция общества — все подчинено единым фундаментальным законам природы. Человек всегда пытался определить эту глобальную взаимосвязь всего со всеми разными способами и понять свое место, роль и предназначение в мире. Развитие науки, и прежде всего физики как способа познания, позволило построить некие модели — системы понимания и описания картины мира на основе существующего знания. На разных этапах развития человечества были построены механическая, электромагнитная, квантово-механиче- ская, синергетическая картины мира. Это отражает лишь бесконечный процесс познания, приближения к единой эволюционной картине мира и обусловливает принципиальную незавершенность научной картины мира. Современная наука пытается переосмыслить познанное, преодолевая необъясненные парадоксы и стереотипы мышления, создавая новую мировоззренческую парадигму.
В свое время механический взгляд, создавший рациональный метод объяснения мира, позволил объяснить и предсказать его развитие, но отделил человека и Бога от существующего мира.
Лапласовский детерминизм тем самым выделил естественные науки из общего холистического понимания всего сущего. Физика отделилась от гуманитарного знания, последующее проникновение в природу вещей на основе естественных наук на самом деле позволило лишь увидеть глубину, сложность и непознан- ность мира, хотя это, конечно, не означает прекращения попыток познать его!
Оказалось, что на фундаментальном уровне природа едина, все грани в ней весьма условны и только лишь отражают последовательное приближение коллективного разума человечества к познанию мира. Об этом писал Н. Н. Моисеев: «Очень многое не ясно и скрыто от нашего взора. Тем не менее, сейчас перед нами развертывается грандиозная гипотетическая картина процесса самоорганизации материи от Большого Взрыва до настоящего времени, когда материя познает себя, когда ей присущ Разум, способный обеспечить ее целенаправленное развитие». Единство всего сущего и его различных проявлений должно обусловливать и сближение, взаимопроникновение естественно-научного и гуманитарною подходов к познанию мира. При этом меняется также и роль исследователя в этом процессе познания: он сам становится неотъемлемой частью создаваемой им картины мира, которая вследствие этого перестает быть только естественно-научной. Поэтому возрастают роль нелогической компоненты мышления в познании, влияние интуитивных, близких художественному творчеству приемов в познании Истины. Правильнее считать, что современная картина мира должна строиться на базе парадигмы естественной и гуманитарной культур, целостного, непредвзятого взгляда на мир. Поэтому наука есть основа взаимопонимания, искусство — основа мировосприятия, а их сумма — основа гармонического восприятия всего мира, человеческого мироощущения. В представления современной естественно-научной картины мира органично вписываются также идеи В. Вернадского о ноосфере как симбиозе человечества и остальной природы, обеспечивающей их коэволюцию, взаимодействие и способ существования.Можно надеяться, что новый целостный взгляд на мир, общество, жизнь в рамках современной концепции естествознания позволит человечеству в XXI в. разумно решать глобальные проблемы демографического, экологического, политического и социально-экономического характера. Не забывая при этом предостережение С. Хокинга: «Предположение, что законы физики, от
крытые и изученные в лаборатории, будут справедливы в других точках пространственно-временного континуума, безусловно, очень смелая экстраполяция». И все же согласимся с А. Эйнштейном, что «самое удивительное в природе это то, что мы можем ее понять». И «наша первейшая задача — научиться слушать природу, чтобы понять ее язык» (И. Тамм), а «то, что мы видим, зависит от того, куда мы смотрим» (Е. Лец).
КОНТРОЛЬНЫЕ ВОПРОС
Ы
Что составляет основную структуру современного естествознания?
Почему физику можно считать основой современного естествознания?
Приведите примеры использования физических моделей для объяснения явлений природы и общества.
Что такое куб фундаментальных физических теорий Зельманова?
О чем говорит принцип «бритвы Оккама»?
Что такое геометродинамика?
Изложите основное содержание современной естественно-научной картины мира.
В чем заключается основная идея парадигмы современной картины мироустройства?
Может ли лишь одна естественная наука объяснить окружающий нас мир?
Каковы Ваши представления о ноосфере?
Почему, на Ваш взгляд, число три имеет такое распространение в описании нашего понимания мира?
ЛИТЕРАТУРА
3,
5, 8, 15-23, 25-28, 32, 36, 42, 45-47, 51-56, 60, 63-66, 75, 78,
81-83, 85, 86, 90-94, 99, 101, 102, 105, 113, 115, 118, 122-126,
130, 135, 138, 143-150, 153, 154, 157, 158, 164, 170, 171, 174-181,
185, 186, 189-191, 198, 199.
?
Жизнь — это тема детективного романа, eceti)a прерывающаяся на самом интересном месте.
В.Я. Александров
Нетктоянно все. что в мире есть, К тому ж изъянов в том, что есть.
не счесть.
Поверь оке в то, что сущее незримо И признано все то, что зримо з()есь.
