- •В. В. Горбачев концепции современного естествознания
- •Глава 1
- •Владимир Иванович Вернадский
- •1.1.1. Программа Платона
- •1.1.2. Представления Аристотеля
- •1.1.3. Модель Демокрита
- •.1.2. Проблемы естествознания на пути познания мира
- •1.2.1.Физический рационализм
- •1.2.2. Методы познания
- •1.2.3. Целостное восприятие мира
- •1.2.4. Физика и восточный мистицизм
- •1.2.5. Взаимосвязь естественных и гуманитарных наук
- •Верп ер Гейзенберг
- •1.2.6. Синергетические представления
- •1.2.7. Универсальный принцип естествознания — принцип дополнительности Бора
- •Нильс Бор
- •Глава 2 механика дискретных объектов я. Смородстнский
- •2.1. Трехмерность пространства
- •2.2. Пространство и время
- •Исаак Ньютон
- •2.3. Особенности механики Ньютона
- •2.4. Движение в механике
- •2.5. Законы Ньютона — Галилея
- •2.6. Законы сохранения
- •2.7. Принципы оптимальности
- •2.8. Механическая картина мира
- •Глава 3 физика полей
- •3.1. Определение понятия поля
- •3.2. Законы Фарадея — Максвелла для электромагнетизма
- •3.3. Электромагнитное поле
- •3.4. Гравитационное поле
- •3.5. Электромагнитная картина мира
- •4.1. Физические начала специальной теории относительности (сто)
- •4.1.1. Постулаты а. Эйнштейна в сто
- •4.1.2. Принцип относительности г. Галилея
- •4.1.3. Теория относительности и инвариантность времени
- •4.1.4. Постоянство скорости света
- •4.1.5. Преобразования г. Лоренца
- •4.1.6. Изменение длины и длительности времени в сто
- •4.1.7. «Парадокс близнецов»
- •4.1.8. Изменение массы в сто
- •4.2. Общая теория относительности (ото)
- •4.2.1. Постулаты ото
- •4.2.2. Экспериментальная проверка ото
- •4.2.3. Гравитация и искривление пространства
- •Глава 5
- •5.1. Описание процессов в микромире
- •5.2. Необходимость введения квантовой механики
- •5.3. Гипотеза Планка
- •Макс Планк
- •5.4. Измерения в квантовой механике
- •Вольфганг Паули
- •5.6. Квантовая механика и обратимость времени
- •5.7. Квантовая электродинамика
- •Глава 6 физика вселенной с. Вайнберг
- •6.1. Космологическая модель а. Эйнштейна — а.А. Фридмана
- •6.2. Другие модели происхождения Вселенной
- •6.2.1. Модель Большого Взрыва
- •Георгий Антонович Гамое
- •6.2.2. Реликтовое излучение
- •6.2.3. Расширяется или сжимается Вселенная?
- •6.2.4. Сценарий развития Вселенной после Большого Взрыва
- •6.3. Современные представления об элементарных частицах как первооснове строения материи Вселенной
- •6.3.1. Классификация элементарных частиц
- •6.3.2. Кварковая модель
- •6.4. Фундаментальные взаимодействия и мировые константы
- •6.4.1. Мировые константы
- •6.4.2. Фундаментальные взаимодействия и их роль в природе
- •6.4.3. Из чего же состоит вещество Вселенной?
- •6.4.4. Черные дыры
- •6.5. Модель единого физического поля и многомерность пространства—времени
- •6.5.1. Возможность многомерности пространства
- •6.6. Устойчивость Вселенной и антропный принцип
- •6.6.1. Множественность миров
- •6.6.2. Иерархичность структуры Вселенной
- •10 Рис. 6.6. Масштабы Вселенной
- •6.7. Антивещество во Вселенной и антигалактики
- •6.8. Механизм образования и эволюции звезд
- •6.8.1. Протон-протонный цикл
- •6.8.2. Углеродо-азотный цикл
- •6.8.3. Эволюция звезд
- •6.8.4. Пульсары
- •6.8.5. Квазары
- •Глава 7
- •7.1. Неравновесная термодинамика и синергетика
- •7.2. Динамика хаоса и порядка
- •7.3. Модель э. Лоренца
- •7.4. Диссипативные структуры
- •7.5. Ячейки Бенара
- •7.6. Реакции Белоусова — Жаботинского
- •7.7. Динамический хаос
- •7.8. Фазовое пространство
- •7.9. Аттракторы
- •7.10. Режим с обострением [
- •7.11. Модель Пуанкаре описания изменения состояния системы
- •7.12. Динамические неустойчивости
- •7.13. Изменение энергии при эволюции системы
- •7.14. Гармония хаоса и порядка и «золотое сечение»
- •Леонардо да Винчи
- •7.15. Открытые системы
- •7.16. Принцип производства минимума энтропии
- •Глава 8
- •8.1. Симметрия и законы сохранения
- •8.2. Симметрия—асимметрия
- •8.3. Закон сохранения электрического заряда
- •8.4. Зеркальная симметрия
- •8.5. Другие виды симметрии
- •8.6. Хиральность живой и неживой природы
- •8.7. Симметрия и энтропия
- •Глава 9 современная естественно-научная картина мира с позиции физики р. Фейнман
- •9.1. Классификация механик
- •9.2. Современная физическая картина мира
- •Часть вторая физика живого и эволюция природы и общества
- •Глава 10
- •Глава 11
- •11.1. Термодинамические особенности развития живых систем
- •11.1.1. Роль энтропии для живых организмов
- •11.1.2. Неустойчивость как фактор развития живого
- •11.2. Энергетический подход к описанию живого
- •11.2.1. Устойчивое неравновесие
- •11.3.1. Иерархия уровней организации живого
- •11.3.2. Метод Фибоначчи как фактор гармонической самоорганизации
- •11.3.3. Физический и биологический методы изучения природы живого
- •11.3.4. Антропный принцип в физике живого
- •11.3.5. Физическая эволюция л. Больцмана и биологическая эволюция ч. Дарвина
- •11.4.1. Физические модели в биологии
- •11.4.2. Физические факторы развития живого
- •11.5. Пространство и время для живых организмов
- •11.5.1. Связь пространства и энергии для живого
- •11.5.2. Биологическое время живой системы
- •11.5.3. Психологическое время живых организмов
- •11.6. Энтропия и информация в живых системах
- •11.6.1. Ценность информации
- •11.6.2. Кибернетический подход к описанию живого
- •11.6.3. Роль физических законов в понимании живого
- •Глава 12
- •12.1. От атомов к протожизни
- •12.1.1. Гипотезы происхождения жизни
- •12.1.2. Необходимые факторы возникновения жизни
- •12.1.3. Теория абиогенного происхождения жизни а.И. Опарина
- •12.1.4. Гетеротрофы и автотрофы
- •12.2.2. Аминокислоты
- •12.2.3. Теория химической эволюции в биогенезе
- •12.2.4. Теория молекулярной самоорганизации м. Эйгена
- •12.2.5. Циклическая организация химических реакций и гиперциклы
- •12. 3. Биохимические составляющие живого вещества
- •12.3.1. Молекулы живой природы
- •12.3.2. Мономеры и макромолекулы
- •12.3.3. Белки
- •12.3.4. Нуклеиновые кислоты
- •12.3.5. Углеводы
- •12.3.6. Липиды
- •12.3.7. Роль воды для живых организмов
- •12.4. Клетка как элементарная частица молекулярной биологии
- •12.4.1. Строение клетки
- •12.4.2. Процессы в клетке
- •12.4.4. Фотосинтез
- •12.4.5. Деление клеток и образование организма
- •12.5. Роль асимметрии в возникновении живого
- •12.5.1. Оптическая активность вещества и хиральность
- •12.5.2. Гомохиральность и самоорганизация в живых организмах
- •Глава 13 физические принципы воспроизводства и развития живых систем
- •13.1. Информационные молекулы наследственности
- •13.1.2. Гены и квантовый мир
- •13.2. Воспроизводство и наследование признаков
- •13.2.2. Законы генетики г. Менделя
- •13.2.3. Хромосомная теория наследственности
- •13.3. Процессы мутагенеза и передача наследственной информации
- •13.3.1. Мутации и радиационный мутагенез
- •13.3.2. Мутации и развитие организма
- •13.4. Матричный принцип синтеза информационных макромолекул и молекулярная генетик
- •13.4.1. Передача наследственной информации через репликации
- •13.4.2. Матричный синтез путем конвариантной редупликации
- •13.4.3. Транскрипция *
- •13.4.6. Новый механизм передачи наследственной информации и прионные болезни
- •Глава 14 физическое понимание эволюционного и индивидуального развития организмов Отличить живое от неживого легче всего на рынке: за живую и дохлую лошадь дают разную цену.
- •14.1. Онтогенез и филогенез. Онтогенетический и популяционный уровни организации жизни
- •14.1.1. Закон Геккеля для онтогенеза и филогенеза
- •14.1.2. Онтогенетический уровень жизни
- •14.1.3. Популяции и лопуляционно-видовой уровень живого
- •14.2. Физическое представление эволюции
- •14.2.1. Синтетическая теория эволюции
- •14.2.4. Живой организм в индивидуальном и историческом развитии
- •14.2.5. Геологическая эволюция и общая схема эволюции Земли по н.Н. Моисееву
- •14.3. Аксиомы биологии
- •14.3.1. Первая аксиома
- •14.3.3. Третья аксиома
- •14.3.4. Четвертая аксиома
- •14.3.5. Физические представления аксиом биологии
- •14.4. Признаки живого и определения жизни
- •14.4.1. Совокупность признаков живого
- •14.4.2. Определения жизни
- •14.5. Физическая модель демографического развития с.П. Капиц
- •Глава 15 физические и информационные поля биологических структур
- •15.1. Физические поля и излучения функционирующего организма человека
- •15.1.1. Электромагнитные поля и излучения живого организма
- •15.1.2. Тепловое и другие виды излучений
- •15.2. Механизм взаимодействия излучений человека с окружающей средой
- •15.2.1. Электромагнитное и ионизирующее излучения
- •15.2.2. Возможности медицинской диагностики и лечения на основе излучений из организма человека
- •15.3.1. Физические процессы передачи информационного сигнала в живом организме
- •15.3.2. Физическая основа памяти
- •15.3.3. Человеческий мозг и компьютер
- •Глава 16 физические аспекты биосферы и основы экологии
- •16.1. Структурная организованность биосферы
- •16.1.1. Биоценозы
- •16.1.2. Геоценозы и биогеоценозы. Экосистемы
- •16.1.4. Биологический круговорот веществ в природе
- •16.1.5. Роль энергии в эволюции
- •16.2.1. Живое вещество
- •16.2.2. Биогеохимические принципы в.И. Вернадского
- •16.3.1. Основные этапы эволюции биосферы
- •16.3.3. Преобразование биосферы в ноосферу
- •16.4. Физические факторы влияния Космоса на земные процессы
- •16.4.1. Связь Космоса с Землей
- •Александр Леонидович Чижевский
- •16.5.1. Увеличение антропогенной нагрузки на окружающую среду
- •16.6.1. Оценки устойчивости биосферы
- •16.6.2. Концепция устойчивого развития и необходимость экологического образования
- •Часть третья концепции естествознания в гуманитарных науках
- •Глава 17 общие естественнонаучные принципы и механизмы в эволюционной картине мира
- •17.1. Основные принципы универсального эволюционизма
- •17.2. Универсальный эволюционизм и методология применения дарвиновской триады в эволюции сложных систем любой природы
- •17.3. Универсальный эволюционизм и синергетика
- •17.4. Современный рационализм и универсальный эволюционизм
- •17.5. Физическое понимание теории пассионарности л. Н. Гумилева
- •Глава 18
- •18.1. Возникновение информационного общества
- •18.2. Глобализация и устойчивое развитие
- •18.3. Социосинергетика
- •18.4. Цивилизация и синергетика
- •18.5. Глобализация и синергетический прогноз развития человечества
- •Глава 19
- •19.1. Физические модели самоорганизации в экономике
- •19.2. Экономическая модель длинных волн н. Д. Кондратьева
- •19.3, Обратимость и необратимость процессов в экономике
- •19.4. Синергетические представления устойчивости
- •19.5. Физическое моделирование рынка
- •19.7. Модель колебательных процессов в экономике
- •19.8. Эволюционный менеджмент
- •Заключение эволюционно-синергетическая парадигма: от целостного естествознания к целостной культуре
- •1. Ньютоновские представления о времени и пространстве20-
- •3. Золотая пропорция как критерий гармонии22
- •4. Синергетическая парадигма23
- •5. Роль воды в природе и живых организмах24
- •6. Влияние радиационных воздействий на экологию25
- •Концепции современного естествознания
7.4. Диссипативные структуры
Система может быть в целом неравновесной, но уже некоторым образом организованной, упорядоченной. Такие структуры И. Пригожин назвал диссипативными структурами (от латинского dissipatio — разгонять; рассеивать свободную энергию). Диссипативные структуры — это такие открытые системы, в которых при больших отклонениях от равновесия возникают упорядоченные состояния. При этом энтропия должна возрастать; изменяются и другие термодинамические функции системы, что свидетельствует в целом о сохранении ее хаотичности. Диссипация как процесс затухания движения, рассеяние энергии, информации играет конструктивную роль в образовании структур в открытых системах. В большинстве случаев диссипация реализуется как переход избыточной энергии в тепло. Таким образом, для нелинейной системы с диссипацией практически невозможно предсказать конкретный путь развития такой системы, так как реальные начальные условия никогда не могут быть заданы точно, а бифуркации тем и характерны, что даже малые возмущения могут сильно изменить ход событий.
7.5. Ячейки Бенара
Можно привести еще два ставших уже классическими примера упорядочения структуры из хаотического движения. Первый пример относится к гидродинамической неустойчивости в жидкости, открытой в 1900 г. Бенаром. На поверхности жидкости при определенных условиях возникает диссипативная пространственная структура, названная ячейками Бенара. Для наглядности опишем опыт Бенара на «бытовом» уровне. На подогреваемую снизу сковороду наливают масло с металлическими опилками, и поэтому вверху образуется тяжелый слой. За счет подогрева, т.е. возникающего градиента температур, в результате действия сил: тяжести и выталкивающей архимедовой, — подогретые легкие и тяжелые верхние слои стремятся поменяться местами. До какого-то момента этим внутренним движениям противодействует внутреннее трение — вязкость (поэтому для наглядности и было выбрано масло), но при достижении некоторой критической разности температур, так же, как в модели атмосферы Лоренца, возникает организованный конвенционный поток, и поверхностный слой масла вдруг, скачком, разделяется на правильные шестиугольные ячейки, напоминающие пчелиные соты, которые можно увидеть, покачивая сковородку. С позиции физики произошел фазовый переход — образовалась новая структура, но переход не равновесный, а неравновесный, требующий подвода внешней энергии.
7.6. Реакции Белоусова — Жаботинского
Второй пример относится к самопроизвольным периодическим химическим реакциям, впервые открытым Б. Белоусовым в 1951 г., в которые никто из химиков не хотел поверить, так как из традиционной химии известно, что химические реакции необратимы. Поэтому при жизни Белоусова результат не был опубликован. Условием публикации было требование редакторов научных журналов теоретического объяснения механизма явления, что само по себе неправильно и несправедливо. Как и в предыдущих моделях Лоренца и Бенара, суть периодических реакций — в возникновении организованных потоков и структур, но только реализованных в химических реакциях, где важную роль играл специфический катализатор. При реакции окисления лимонной кислоты с таким катализатором в определенной последовательности возникали окислительно-восстановительные процессы, и раствор самопроизвольно периодически менял цвет. Подобные реакции в дальнейшем широко исследовали и использовали для разных веществ, и они получили название реакций Белоусова — Жаботинского. Ныне известны и другие колебательные реакции, но реакция Белоусова — Жаботинского является в известном смысле исторической, поскольку она показала, что вдали от состояния равновесия вещество обретает новые свойства [23].
Сделаем маленькое историко-психологическое отступление. Мы часто читаем и знаем о драматических историях великих зарубежных ученых, их идеях, заблуждениях и непризнании их современниками (Эйнштейн, Больцман, Пуанкаре и многие другие), но не замечаем или забываем о своих собственных великих соотечественниках, живущих рядом в нашем пространстве "и времени. Так, для меня в 1959 г., когда я работал, «ходил», как говорят о себе «морские волки», на первом нашем атомоходе «Ленин» в Арктике, было открытием (не географическим), что автор открытого им (географически) пролива русский гидрограф Б. Вилькицкий (1885—1961) еще жив, но находится в эмиграции, и, естественно, по этой причине, как и упоминавшийся уже замечательный наш физик Г. А. Гамов, в нашей прессе (и не только научной) не упоминался. Так случилось, к сожалению, и с Б. Белоусовым, не получившим при жизни (он умер в 1970 г.) достойного признания своего открытия. Как писал Н. Климон- тович [13] про Белоусова, «комбриг в отставке, человек прекрасного естественно-научного образования и великолепный химик- организатор», лишь в 1980 г. был отмечен Ленинской премией в области химии.
Реакции, приводящие к временным структурам в химии, могут быть отнесены к колебательным реакциям — автокаталитическим по химической терминологии или к автоволновым процессам по физической терминологии. В автокаталитических реакциях продукты каталитически ускоряют саму реакцию и скорость ее растет с ростом концентрации ее продуктов. Автоволны — самоподдерживающиеся волны, которые распространяются в активных средах с распределенной запасенной энергией, или в таких, в которых подводится энергия извне. За счет обратной связи между отдельными стадиями сложной реакции или любыми частями самоорганизующейся системы автоволны могут поддерживать свои характеристики. Автоволновые процессы, которые относят к самоорганизующимся процессам, получили свое развитие в работах представителей русской школы теории колебаний, в том числе в нелинейных средах, Л. Мандельштама (1879—1944), А. Андронова (1901—1952), Р. Хохлова (1926—1977), С. Ахманова. Можно даже считать, что это был «русский подход» к проблемам самоорганизации. Они. имеют более глубокий смысл, поскольку на их основе анализируют многие процессы в природе и обществе, не только при химических реакциях, в том числе и в процессах горения и окисления, передачи информации, например, в биологии, географии, этнографии, социологии и других науках. Отметим, что Приго- жин и его школа, занимающаяся неравновесной термодинамикой, избегают синергетической терминологии, введенной Хаке- ном для динамики неустойчивых структур.
