- •В. В. Горбачев концепции современного естествознания
- •Глава 1
- •Владимир Иванович Вернадский
- •1.1.1. Программа Платона
- •1.1.2. Представления Аристотеля
- •1.1.3. Модель Демокрита
- •.1.2. Проблемы естествознания на пути познания мира
- •1.2.1.Физический рационализм
- •1.2.2. Методы познания
- •1.2.3. Целостное восприятие мира
- •1.2.4. Физика и восточный мистицизм
- •1.2.5. Взаимосвязь естественных и гуманитарных наук
- •Верп ер Гейзенберг
- •1.2.6. Синергетические представления
- •1.2.7. Универсальный принцип естествознания — принцип дополнительности Бора
- •Нильс Бор
- •Глава 2 механика дискретных объектов я. Смородстнский
- •2.1. Трехмерность пространства
- •2.2. Пространство и время
- •Исаак Ньютон
- •2.3. Особенности механики Ньютона
- •2.4. Движение в механике
- •2.5. Законы Ньютона — Галилея
- •2.6. Законы сохранения
- •2.7. Принципы оптимальности
- •2.8. Механическая картина мира
- •Глава 3 физика полей
- •3.1. Определение понятия поля
- •3.2. Законы Фарадея — Максвелла для электромагнетизма
- •3.3. Электромагнитное поле
- •3.4. Гравитационное поле
- •3.5. Электромагнитная картина мира
- •4.1. Физические начала специальной теории относительности (сто)
- •4.1.1. Постулаты а. Эйнштейна в сто
- •4.1.2. Принцип относительности г. Галилея
- •4.1.3. Теория относительности и инвариантность времени
- •4.1.4. Постоянство скорости света
- •4.1.5. Преобразования г. Лоренца
- •4.1.6. Изменение длины и длительности времени в сто
- •4.1.7. «Парадокс близнецов»
- •4.1.8. Изменение массы в сто
- •4.2. Общая теория относительности (ото)
- •4.2.1. Постулаты ото
- •4.2.2. Экспериментальная проверка ото
- •4.2.3. Гравитация и искривление пространства
- •Глава 5
- •5.1. Описание процессов в микромире
- •5.2. Необходимость введения квантовой механики
- •5.3. Гипотеза Планка
- •Макс Планк
- •5.4. Измерения в квантовой механике
- •Вольфганг Паули
- •5.6. Квантовая механика и обратимость времени
- •5.7. Квантовая электродинамика
- •Глава 6 физика вселенной с. Вайнберг
- •6.1. Космологическая модель а. Эйнштейна — а.А. Фридмана
- •6.2. Другие модели происхождения Вселенной
- •6.2.1. Модель Большого Взрыва
- •Георгий Антонович Гамое
- •6.2.2. Реликтовое излучение
- •6.2.3. Расширяется или сжимается Вселенная?
- •6.2.4. Сценарий развития Вселенной после Большого Взрыва
- •6.3. Современные представления об элементарных частицах как первооснове строения материи Вселенной
- •6.3.1. Классификация элементарных частиц
- •6.3.2. Кварковая модель
- •6.4. Фундаментальные взаимодействия и мировые константы
- •6.4.1. Мировые константы
- •6.4.2. Фундаментальные взаимодействия и их роль в природе
- •6.4.3. Из чего же состоит вещество Вселенной?
- •6.4.4. Черные дыры
- •6.5. Модель единого физического поля и многомерность пространства—времени
- •6.5.1. Возможность многомерности пространства
- •6.6. Устойчивость Вселенной и антропный принцип
- •6.6.1. Множественность миров
- •6.6.2. Иерархичность структуры Вселенной
- •10 Рис. 6.6. Масштабы Вселенной
- •6.7. Антивещество во Вселенной и антигалактики
- •6.8. Механизм образования и эволюции звезд
- •6.8.1. Протон-протонный цикл
- •6.8.2. Углеродо-азотный цикл
- •6.8.3. Эволюция звезд
- •6.8.4. Пульсары
- •6.8.5. Квазары
- •Глава 7
- •7.1. Неравновесная термодинамика и синергетика
- •7.2. Динамика хаоса и порядка
- •7.3. Модель э. Лоренца
- •7.4. Диссипативные структуры
- •7.5. Ячейки Бенара
- •7.6. Реакции Белоусова — Жаботинского
- •7.7. Динамический хаос
- •7.8. Фазовое пространство
- •7.9. Аттракторы
- •7.10. Режим с обострением [
- •7.11. Модель Пуанкаре описания изменения состояния системы
- •7.12. Динамические неустойчивости
- •7.13. Изменение энергии при эволюции системы
- •7.14. Гармония хаоса и порядка и «золотое сечение»
- •Леонардо да Винчи
- •7.15. Открытые системы
- •7.16. Принцип производства минимума энтропии
- •Глава 8
- •8.1. Симметрия и законы сохранения
- •8.2. Симметрия—асимметрия
- •8.3. Закон сохранения электрического заряда
- •8.4. Зеркальная симметрия
- •8.5. Другие виды симметрии
- •8.6. Хиральность живой и неживой природы
- •8.7. Симметрия и энтропия
- •Глава 9 современная естественно-научная картина мира с позиции физики р. Фейнман
- •9.1. Классификация механик
- •9.2. Современная физическая картина мира
- •Часть вторая физика живого и эволюция природы и общества
- •Глава 10
- •Глава 11
- •11.1. Термодинамические особенности развития живых систем
- •11.1.1. Роль энтропии для живых организмов
- •11.1.2. Неустойчивость как фактор развития живого
- •11.2. Энергетический подход к описанию живого
- •11.2.1. Устойчивое неравновесие
- •11.3.1. Иерархия уровней организации живого
- •11.3.2. Метод Фибоначчи как фактор гармонической самоорганизации
- •11.3.3. Физический и биологический методы изучения природы живого
- •11.3.4. Антропный принцип в физике живого
- •11.3.5. Физическая эволюция л. Больцмана и биологическая эволюция ч. Дарвина
- •11.4.1. Физические модели в биологии
- •11.4.2. Физические факторы развития живого
- •11.5. Пространство и время для живых организмов
- •11.5.1. Связь пространства и энергии для живого
- •11.5.2. Биологическое время живой системы
- •11.5.3. Психологическое время живых организмов
- •11.6. Энтропия и информация в живых системах
- •11.6.1. Ценность информации
- •11.6.2. Кибернетический подход к описанию живого
- •11.6.3. Роль физических законов в понимании живого
- •Глава 12
- •12.1. От атомов к протожизни
- •12.1.1. Гипотезы происхождения жизни
- •12.1.2. Необходимые факторы возникновения жизни
- •12.1.3. Теория абиогенного происхождения жизни а.И. Опарина
- •12.1.4. Гетеротрофы и автотрофы
- •12.2.2. Аминокислоты
- •12.2.3. Теория химической эволюции в биогенезе
- •12.2.4. Теория молекулярной самоорганизации м. Эйгена
- •12.2.5. Циклическая организация химических реакций и гиперциклы
- •12. 3. Биохимические составляющие живого вещества
- •12.3.1. Молекулы живой природы
- •12.3.2. Мономеры и макромолекулы
- •12.3.3. Белки
- •12.3.4. Нуклеиновые кислоты
- •12.3.5. Углеводы
- •12.3.6. Липиды
- •12.3.7. Роль воды для живых организмов
- •12.4. Клетка как элементарная частица молекулярной биологии
- •12.4.1. Строение клетки
- •12.4.2. Процессы в клетке
- •12.4.4. Фотосинтез
- •12.4.5. Деление клеток и образование организма
- •12.5. Роль асимметрии в возникновении живого
- •12.5.1. Оптическая активность вещества и хиральность
- •12.5.2. Гомохиральность и самоорганизация в живых организмах
- •Глава 13 физические принципы воспроизводства и развития живых систем
- •13.1. Информационные молекулы наследственности
- •13.1.2. Гены и квантовый мир
- •13.2. Воспроизводство и наследование признаков
- •13.2.2. Законы генетики г. Менделя
- •13.2.3. Хромосомная теория наследственности
- •13.3. Процессы мутагенеза и передача наследственной информации
- •13.3.1. Мутации и радиационный мутагенез
- •13.3.2. Мутации и развитие организма
- •13.4. Матричный принцип синтеза информационных макромолекул и молекулярная генетик
- •13.4.1. Передача наследственной информации через репликации
- •13.4.2. Матричный синтез путем конвариантной редупликации
- •13.4.3. Транскрипция *
- •13.4.6. Новый механизм передачи наследственной информации и прионные болезни
- •Глава 14 физическое понимание эволюционного и индивидуального развития организмов Отличить живое от неживого легче всего на рынке: за живую и дохлую лошадь дают разную цену.
- •14.1. Онтогенез и филогенез. Онтогенетический и популяционный уровни организации жизни
- •14.1.1. Закон Геккеля для онтогенеза и филогенеза
- •14.1.2. Онтогенетический уровень жизни
- •14.1.3. Популяции и лопуляционно-видовой уровень живого
- •14.2. Физическое представление эволюции
- •14.2.1. Синтетическая теория эволюции
- •14.2.4. Живой организм в индивидуальном и историческом развитии
- •14.2.5. Геологическая эволюция и общая схема эволюции Земли по н.Н. Моисееву
- •14.3. Аксиомы биологии
- •14.3.1. Первая аксиома
- •14.3.3. Третья аксиома
- •14.3.4. Четвертая аксиома
- •14.3.5. Физические представления аксиом биологии
- •14.4. Признаки живого и определения жизни
- •14.4.1. Совокупность признаков живого
- •14.4.2. Определения жизни
- •14.5. Физическая модель демографического развития с.П. Капиц
- •Глава 15 физические и информационные поля биологических структур
- •15.1. Физические поля и излучения функционирующего организма человека
- •15.1.1. Электромагнитные поля и излучения живого организма
- •15.1.2. Тепловое и другие виды излучений
- •15.2. Механизм взаимодействия излучений человека с окружающей средой
- •15.2.1. Электромагнитное и ионизирующее излучения
- •15.2.2. Возможности медицинской диагностики и лечения на основе излучений из организма человека
- •15.3.1. Физические процессы передачи информационного сигнала в живом организме
- •15.3.2. Физическая основа памяти
- •15.3.3. Человеческий мозг и компьютер
- •Глава 16 физические аспекты биосферы и основы экологии
- •16.1. Структурная организованность биосферы
- •16.1.1. Биоценозы
- •16.1.2. Геоценозы и биогеоценозы. Экосистемы
- •16.1.4. Биологический круговорот веществ в природе
- •16.1.5. Роль энергии в эволюции
- •16.2.1. Живое вещество
- •16.2.2. Биогеохимические принципы в.И. Вернадского
- •16.3.1. Основные этапы эволюции биосферы
- •16.3.3. Преобразование биосферы в ноосферу
- •16.4. Физические факторы влияния Космоса на земные процессы
- •16.4.1. Связь Космоса с Землей
- •Александр Леонидович Чижевский
- •16.5.1. Увеличение антропогенной нагрузки на окружающую среду
- •16.6.1. Оценки устойчивости биосферы
- •16.6.2. Концепция устойчивого развития и необходимость экологического образования
- •Часть третья концепции естествознания в гуманитарных науках
- •Глава 17 общие естественнонаучные принципы и механизмы в эволюционной картине мира
- •17.1. Основные принципы универсального эволюционизма
- •17.2. Универсальный эволюционизм и методология применения дарвиновской триады в эволюции сложных систем любой природы
- •17.3. Универсальный эволюционизм и синергетика
- •17.4. Современный рационализм и универсальный эволюционизм
- •17.5. Физическое понимание теории пассионарности л. Н. Гумилева
- •Глава 18
- •18.1. Возникновение информационного общества
- •18.2. Глобализация и устойчивое развитие
- •18.3. Социосинергетика
- •18.4. Цивилизация и синергетика
- •18.5. Глобализация и синергетический прогноз развития человечества
- •Глава 19
- •19.1. Физические модели самоорганизации в экономике
- •19.2. Экономическая модель длинных волн н. Д. Кондратьева
- •19.3, Обратимость и необратимость процессов в экономике
- •19.4. Синергетические представления устойчивости
- •19.5. Физическое моделирование рынка
- •19.7. Модель колебательных процессов в экономике
- •19.8. Эволюционный менеджмент
- •Заключение эволюционно-синергетическая парадигма: от целостного естествознания к целостной культуре
- •1. Ньютоновские представления о времени и пространстве20-
- •3. Золотая пропорция как критерий гармонии22
- •4. Синергетическая парадигма23
- •5. Роль воды в природе и живых организмах24
- •6. Влияние радиационных воздействий на экологию25
- •Концепции современного естествознания
6.3.1. Классификация элементарных частиц
Поль
Дирак
единый принцип, который, когда его откроют, позволит построить общую картину и систематизировать это обилие частиц. ,
В настоящее время в основе современной классификации элементарных частиц лежит их деление на два класса (рис. 6.2): сильно взаимодействующих (адроны) и слабо взаимодействующих (лептоны) частиц. Адроны делятся также на мезоны и ба- рионы, а последние, в свою очередь, на нуклоны (нейтроны и протоны) и гипероны (X, I, Е, Q). Название «гипероны» происходит от греческого «гипер» — выше, так как они тяжелее протона, «барионы» — от греческого «барис» тяжелый. К лептонам относятся электроны, мюоны и нейтрино. Барионы (нуклоны, гипероны, барионные резонансы — короткоживущие частицы) при любых реакциях могут превращаться в протоны или из них получаться. Разность между числом барионов и антибарионов в системе называется барионным числом. В теории элементарных частиц существует закон сохранения барионного числа в любом процессе. Именно этим законом обусловлена невозможность аннигиляции протона и электрона в обычных условиях, потому что протон — это барион, а электрон — лептон. Закон сохранения барионных чисел обеспечивает также стабильность прото-
Рис.
6.2. Схема классификации элементарных
частиц.
нов. С точки зрения квантовой статистики, частицы с разными (целыми и полуцелыми) спинами могут также разделяться на фермионы (статистика Ферми) с полуцелым спином (1/2): электрон, нейтрон, мюон, протон, нейтрон, гиперон), бозоны (статистика Бозе) с целым (0,1) спином: пион (я-мезон), каон (ЛГ-мезон), фотон. Фермионы, все без исключения, возникают или аннигилируют парами. С другой стороны, бозоны могут рождаться или поглощаться по одному и группами по несколько частиц.
В дополнение к закону сохранения числа барионов Гелл-Манн (р. 1929) и Нишиджима в 1953 г. ввели еще одну квантовую характеристику — странность S, для которой тоже существует закон сохранения, согласно которому странность сохраняется во всех сильных (ядерных) взаимодействиях, действующих на расстоянии около 10~13 см. Эти законы позволяют прогнозировать природу взаимодействия различных элементарных частиц. К концу 50-х годов нашего века численность и разнообразие элементарных частиц настолько выросли, что классификация их только по массе, заряду и спину, даже с учетом упомянутых законов сохранения барионного числа и странности, вызывала у физиков-теоретиков значительное неудовлетворение. Появлялись даже идеи, что за этим разнообразием скрывается некая симметрия.
6.3.2. Кварковая модель
Развитием этого поиска явилось еще одно изобретение Гелл-Манна (1963), а затем независим^ от него Цвейга (1964) — модель кварков. В этой модели предполагается, что все сильнов- заимодействующие элементарные частицы являются комбинациями трех основных частиц (которые и называются кварками) и их античастиц. Название «кварк» взято Гелл-Манном из туманной фразы романа Дж. Джойса «Поминки по Финнегану»: «Три кварка для мистера Марка». Другое объяснение этому термину — это название напоминает английское звукоподражание крику чаек. Кварки имеют необычные свойства: электриче- 1 2
ский заряд, равный ±3 е или ±3 е, и барионное число (заряд) тоже дробный: равный ^. Обозначение кварков и антикварков, а также их параметров дано в табл. 6.1.
Таблица
6.1 |
Символ |
Заряд я |
Странность S |
Барионное число (заряд) В |
Сини s |
Кварки |
* |
2 + Зе |
0 |
1 3 |
1 2 |
|
|
1 "3е |
0 |
1 3 |
1 2 |
|
6 |
1
|
-1 |
1 3 |
1 2 |
Антикварки |
|
1 3 |
+1 |
1 3 |
1 2 |
|
д |
1 + зе |
0 |
1 3 |
1 2 |
|
4 |
2
|
0 |
1 3 |
1 2 |
Таким образом, основные свойства кварков — заряд q
2 I I \ ■
+ 3 е, — з е, — 3е)' странность S (0, 0, —1), барионное число В
^, j, 5 j и спин s Q j не похожи на свойства других частиц.
Однако различные комбинации этих гипотетических частиц воспроизводят свойства всех известных адронов с поразительной точностью. Предполагается, что, например, барионы построены из трех кварков, а мезоны из двух кварков (кварк — антикварк). Реальны ли кварки в действительности или эта модель служит лишь удобным средством описания элементарных частиц, но лишена физического реального смысла? Пока это не известно. Кстати, последними исследованиями показано, что кварки не являются самыми «неделимыми». Обнаружены уже протокварки.
Тем не менее, несмотря на то что экспериментально кварки в свободном состоянии не обнаружены, в теории элементарных частиц существует так называемая «стандартная модель». Согласно этой модели кварки различаются «ароматом»: и (от up — верхний), d (от down — нижний), s (от strange — странный), с (от charm — очарование), b (от beauty — красота), t (от truth — истинный). Главная особенность всех кварков в том, что они являются обладателями соответствующих сильных зарядов. Заряды сильного поля имеют три равноправные разновидности (вместо одного электрического заряда в теории электрических сил). В исторически сложившейся терминологии эти три разновидности заряда называют цветами кварков, а именно: условно красным, зеленым и синим. Таким образом, каждый кварк в табл. 6.1 и 6.2 является цветной частицей. Смешение всех трех цветов, подобно тому как это имеет место в оптике, дает белый цвет, т. е. обесцвечивает частицу. Все наблюдаемые адроны бесцветны.
Взаимодействия кварков осуществляют восемь разных глюо- нов. Термин «глюон» в переводе с английского языка означает «клей», т. е. эти кванты и есть частицы, которые как бы склеивают кварки между собой. Как и кварки, глюоны являются цветными частицами, но поскольку каждый глюон изменяет цвета сразу двух кварков (кварка, который испускает глюон, и кварка, который поглотил глюон), то глюон окрашен дважды, неся на себе цвет и антицвет, как правило, отличный от цвета.
Масса покоя глюонов, как и у фотона, равна нулю. Кроме того, глюоны электрически нейтральны и не обладают слабым зарядом.
Современные представления о природе таковы, что в рамках «стандартной модели» существует всего три поколения кварков, лептонов и нейтрино, которые и представляют собой начальный уровень структурной организации материи.
Из лептонов и кварков первого поколения вместе с фотонами построена современная Вселенная. Частицы второго и третьего
Таблица 6.2
|
Кварки |
|||||
|
и |
d |
S |
с |
6 |
т |
Масса т0 |
(1,5-5) МэВ/с2 |
(3-9) МэВ/с2 |
(60-170) МэВ/с2 |
(1,1-4,4) ГэВ/с2 |
(4,1-4,4) ГэВ/с2 |
17 ГэВ |
Изоспин / |
|
|
0 |
0 |
0 |
0 |
Проекция /3 |
|
1 2 |
0 |
0 |
0 |
0 |
Электрический заряд |
♦Г |
1 3 |
1 3 |
+1 |
1 3 |
+2 |
Странность S |
0 |
0 |
-1 |
0 |
0 |
0 |
Чарм С |
0 |
0 |
0 |
+1 |
0 |
0 |
Боттом В |
0 |
0 |
0 |
0 |
-1 |
0 |
Топ Т |
0 |
0 |
0 |
0 |
0 |
+ |
поколения играли важную роль в первые мгновения после Большого Взрыва ранней Вселенной, когда не было различия между лептонами и кварками.
Академик РАЕН Б. А. Трубников отмечал, что прошедший XX век справедливо называть квантово-релятивистским веком. В 1897 г. Томсон (1824—1907) открыл электрон, в 1911 г. Резер- форд открыл атомное ядро, затем в 1931—1932 гг. Чадвиком были обнаружены нейтроны, а Андерсеном — позитроны. После обнаружения сотен других короткоживущих частиц и «наведения порядка» для них была разработана квантовая теория поля, в рамках которой теоретически и были предсказаны совершенно новые объекты природы — кварки и глюоны. В настоящее время установлено, что истинно элементарными частицами следует считать шесть сортов кварков со своим «ароматами»: и, d, s, с, t, b и шесть сортов лептонов. Это — электрон ё~, мюон ц, тау-лептон (таон) т и соответствующие этим частицам нейтрино (ve, vT). Предполагается, что согласно принципу кварк-лептонИой симметрии каждому лептону должен соответствовать определенный кварк (табл. 6.3).
|
Таблица 6.3 Поколеяне |
Легггои |
Кварк |
Первое |
Электронное нейтрино ve Электрон е |
Верхний (up) кварк и Нижний (down) d |
Второе |
Мюонное нейтрино v^ Мюон ц |
Очарованный (charm) с Странный (strange) s |
Третье |
Тау нейтрино т Маон цт |
Истинный (truth) t Прелестный (beaty) b |
