- •В. В. Горбачев концепции современного естествознания
- •Глава 1
- •Владимир Иванович Вернадский
- •1.1.1. Программа Платона
- •1.1.2. Представления Аристотеля
- •1.1.3. Модель Демокрита
- •.1.2. Проблемы естествознания на пути познания мира
- •1.2.1.Физический рационализм
- •1.2.2. Методы познания
- •1.2.3. Целостное восприятие мира
- •1.2.4. Физика и восточный мистицизм
- •1.2.5. Взаимосвязь естественных и гуманитарных наук
- •Верп ер Гейзенберг
- •1.2.6. Синергетические представления
- •1.2.7. Универсальный принцип естествознания — принцип дополнительности Бора
- •Нильс Бор
- •Глава 2 механика дискретных объектов я. Смородстнский
- •2.1. Трехмерность пространства
- •2.2. Пространство и время
- •Исаак Ньютон
- •2.3. Особенности механики Ньютона
- •2.4. Движение в механике
- •2.5. Законы Ньютона — Галилея
- •2.6. Законы сохранения
- •2.7. Принципы оптимальности
- •2.8. Механическая картина мира
- •Глава 3 физика полей
- •3.1. Определение понятия поля
- •3.2. Законы Фарадея — Максвелла для электромагнетизма
- •3.3. Электромагнитное поле
- •3.4. Гравитационное поле
- •3.5. Электромагнитная картина мира
- •4.1. Физические начала специальной теории относительности (сто)
- •4.1.1. Постулаты а. Эйнштейна в сто
- •4.1.2. Принцип относительности г. Галилея
- •4.1.3. Теория относительности и инвариантность времени
- •4.1.4. Постоянство скорости света
- •4.1.5. Преобразования г. Лоренца
- •4.1.6. Изменение длины и длительности времени в сто
- •4.1.7. «Парадокс близнецов»
- •4.1.8. Изменение массы в сто
- •4.2. Общая теория относительности (ото)
- •4.2.1. Постулаты ото
- •4.2.2. Экспериментальная проверка ото
- •4.2.3. Гравитация и искривление пространства
- •Глава 5
- •5.1. Описание процессов в микромире
- •5.2. Необходимость введения квантовой механики
- •5.3. Гипотеза Планка
- •Макс Планк
- •5.4. Измерения в квантовой механике
- •Вольфганг Паули
- •5.6. Квантовая механика и обратимость времени
- •5.7. Квантовая электродинамика
- •Глава 6 физика вселенной с. Вайнберг
- •6.1. Космологическая модель а. Эйнштейна — а.А. Фридмана
- •6.2. Другие модели происхождения Вселенной
- •6.2.1. Модель Большого Взрыва
- •Георгий Антонович Гамое
- •6.2.2. Реликтовое излучение
- •6.2.3. Расширяется или сжимается Вселенная?
- •6.2.4. Сценарий развития Вселенной после Большого Взрыва
- •6.3. Современные представления об элементарных частицах как первооснове строения материи Вселенной
- •6.3.1. Классификация элементарных частиц
- •6.3.2. Кварковая модель
- •6.4. Фундаментальные взаимодействия и мировые константы
- •6.4.1. Мировые константы
- •6.4.2. Фундаментальные взаимодействия и их роль в природе
- •6.4.3. Из чего же состоит вещество Вселенной?
- •6.4.4. Черные дыры
- •6.5. Модель единого физического поля и многомерность пространства—времени
- •6.5.1. Возможность многомерности пространства
- •6.6. Устойчивость Вселенной и антропный принцип
- •6.6.1. Множественность миров
- •6.6.2. Иерархичность структуры Вселенной
- •10 Рис. 6.6. Масштабы Вселенной
- •6.7. Антивещество во Вселенной и антигалактики
- •6.8. Механизм образования и эволюции звезд
- •6.8.1. Протон-протонный цикл
- •6.8.2. Углеродо-азотный цикл
- •6.8.3. Эволюция звезд
- •6.8.4. Пульсары
- •6.8.5. Квазары
- •Глава 7
- •7.1. Неравновесная термодинамика и синергетика
- •7.2. Динамика хаоса и порядка
- •7.3. Модель э. Лоренца
- •7.4. Диссипативные структуры
- •7.5. Ячейки Бенара
- •7.6. Реакции Белоусова — Жаботинского
- •7.7. Динамический хаос
- •7.8. Фазовое пространство
- •7.9. Аттракторы
- •7.10. Режим с обострением [
- •7.11. Модель Пуанкаре описания изменения состояния системы
- •7.12. Динамические неустойчивости
- •7.13. Изменение энергии при эволюции системы
- •7.14. Гармония хаоса и порядка и «золотое сечение»
- •Леонардо да Винчи
- •7.15. Открытые системы
- •7.16. Принцип производства минимума энтропии
- •Глава 8
- •8.1. Симметрия и законы сохранения
- •8.2. Симметрия—асимметрия
- •8.3. Закон сохранения электрического заряда
- •8.4. Зеркальная симметрия
- •8.5. Другие виды симметрии
- •8.6. Хиральность живой и неживой природы
- •8.7. Симметрия и энтропия
- •Глава 9 современная естественно-научная картина мира с позиции физики р. Фейнман
- •9.1. Классификация механик
- •9.2. Современная физическая картина мира
- •Часть вторая физика живого и эволюция природы и общества
- •Глава 10
- •Глава 11
- •11.1. Термодинамические особенности развития живых систем
- •11.1.1. Роль энтропии для живых организмов
- •11.1.2. Неустойчивость как фактор развития живого
- •11.2. Энергетический подход к описанию живого
- •11.2.1. Устойчивое неравновесие
- •11.3.1. Иерархия уровней организации живого
- •11.3.2. Метод Фибоначчи как фактор гармонической самоорганизации
- •11.3.3. Физический и биологический методы изучения природы живого
- •11.3.4. Антропный принцип в физике живого
- •11.3.5. Физическая эволюция л. Больцмана и биологическая эволюция ч. Дарвина
- •11.4.1. Физические модели в биологии
- •11.4.2. Физические факторы развития живого
- •11.5. Пространство и время для живых организмов
- •11.5.1. Связь пространства и энергии для живого
- •11.5.2. Биологическое время живой системы
- •11.5.3. Психологическое время живых организмов
- •11.6. Энтропия и информация в живых системах
- •11.6.1. Ценность информации
- •11.6.2. Кибернетический подход к описанию живого
- •11.6.3. Роль физических законов в понимании живого
- •Глава 12
- •12.1. От атомов к протожизни
- •12.1.1. Гипотезы происхождения жизни
- •12.1.2. Необходимые факторы возникновения жизни
- •12.1.3. Теория абиогенного происхождения жизни а.И. Опарина
- •12.1.4. Гетеротрофы и автотрофы
- •12.2.2. Аминокислоты
- •12.2.3. Теория химической эволюции в биогенезе
- •12.2.4. Теория молекулярной самоорганизации м. Эйгена
- •12.2.5. Циклическая организация химических реакций и гиперциклы
- •12. 3. Биохимические составляющие живого вещества
- •12.3.1. Молекулы живой природы
- •12.3.2. Мономеры и макромолекулы
- •12.3.3. Белки
- •12.3.4. Нуклеиновые кислоты
- •12.3.5. Углеводы
- •12.3.6. Липиды
- •12.3.7. Роль воды для живых организмов
- •12.4. Клетка как элементарная частица молекулярной биологии
- •12.4.1. Строение клетки
- •12.4.2. Процессы в клетке
- •12.4.4. Фотосинтез
- •12.4.5. Деление клеток и образование организма
- •12.5. Роль асимметрии в возникновении живого
- •12.5.1. Оптическая активность вещества и хиральность
- •12.5.2. Гомохиральность и самоорганизация в живых организмах
- •Глава 13 физические принципы воспроизводства и развития живых систем
- •13.1. Информационные молекулы наследственности
- •13.1.2. Гены и квантовый мир
- •13.2. Воспроизводство и наследование признаков
- •13.2.2. Законы генетики г. Менделя
- •13.2.3. Хромосомная теория наследственности
- •13.3. Процессы мутагенеза и передача наследственной информации
- •13.3.1. Мутации и радиационный мутагенез
- •13.3.2. Мутации и развитие организма
- •13.4. Матричный принцип синтеза информационных макромолекул и молекулярная генетик
- •13.4.1. Передача наследственной информации через репликации
- •13.4.2. Матричный синтез путем конвариантной редупликации
- •13.4.3. Транскрипция *
- •13.4.6. Новый механизм передачи наследственной информации и прионные болезни
- •Глава 14 физическое понимание эволюционного и индивидуального развития организмов Отличить живое от неживого легче всего на рынке: за живую и дохлую лошадь дают разную цену.
- •14.1. Онтогенез и филогенез. Онтогенетический и популяционный уровни организации жизни
- •14.1.1. Закон Геккеля для онтогенеза и филогенеза
- •14.1.2. Онтогенетический уровень жизни
- •14.1.3. Популяции и лопуляционно-видовой уровень живого
- •14.2. Физическое представление эволюции
- •14.2.1. Синтетическая теория эволюции
- •14.2.4. Живой организм в индивидуальном и историческом развитии
- •14.2.5. Геологическая эволюция и общая схема эволюции Земли по н.Н. Моисееву
- •14.3. Аксиомы биологии
- •14.3.1. Первая аксиома
- •14.3.3. Третья аксиома
- •14.3.4. Четвертая аксиома
- •14.3.5. Физические представления аксиом биологии
- •14.4. Признаки живого и определения жизни
- •14.4.1. Совокупность признаков живого
- •14.4.2. Определения жизни
- •14.5. Физическая модель демографического развития с.П. Капиц
- •Глава 15 физические и информационные поля биологических структур
- •15.1. Физические поля и излучения функционирующего организма человека
- •15.1.1. Электромагнитные поля и излучения живого организма
- •15.1.2. Тепловое и другие виды излучений
- •15.2. Механизм взаимодействия излучений человека с окружающей средой
- •15.2.1. Электромагнитное и ионизирующее излучения
- •15.2.2. Возможности медицинской диагностики и лечения на основе излучений из организма человека
- •15.3.1. Физические процессы передачи информационного сигнала в живом организме
- •15.3.2. Физическая основа памяти
- •15.3.3. Человеческий мозг и компьютер
- •Глава 16 физические аспекты биосферы и основы экологии
- •16.1. Структурная организованность биосферы
- •16.1.1. Биоценозы
- •16.1.2. Геоценозы и биогеоценозы. Экосистемы
- •16.1.4. Биологический круговорот веществ в природе
- •16.1.5. Роль энергии в эволюции
- •16.2.1. Живое вещество
- •16.2.2. Биогеохимические принципы в.И. Вернадского
- •16.3.1. Основные этапы эволюции биосферы
- •16.3.3. Преобразование биосферы в ноосферу
- •16.4. Физические факторы влияния Космоса на земные процессы
- •16.4.1. Связь Космоса с Землей
- •Александр Леонидович Чижевский
- •16.5.1. Увеличение антропогенной нагрузки на окружающую среду
- •16.6.1. Оценки устойчивости биосферы
- •16.6.2. Концепция устойчивого развития и необходимость экологического образования
- •Часть третья концепции естествознания в гуманитарных науках
- •Глава 17 общие естественнонаучные принципы и механизмы в эволюционной картине мира
- •17.1. Основные принципы универсального эволюционизма
- •17.2. Универсальный эволюционизм и методология применения дарвиновской триады в эволюции сложных систем любой природы
- •17.3. Универсальный эволюционизм и синергетика
- •17.4. Современный рационализм и универсальный эволюционизм
- •17.5. Физическое понимание теории пассионарности л. Н. Гумилева
- •Глава 18
- •18.1. Возникновение информационного общества
- •18.2. Глобализация и устойчивое развитие
- •18.3. Социосинергетика
- •18.4. Цивилизация и синергетика
- •18.5. Глобализация и синергетический прогноз развития человечества
- •Глава 19
- •19.1. Физические модели самоорганизации в экономике
- •19.2. Экономическая модель длинных волн н. Д. Кондратьева
- •19.3, Обратимость и необратимость процессов в экономике
- •19.4. Синергетические представления устойчивости
- •19.5. Физическое моделирование рынка
- •19.7. Модель колебательных процессов в экономике
- •19.8. Эволюционный менеджмент
- •Заключение эволюционно-синергетическая парадигма: от целостного естествознания к целостной культуре
- •1. Ньютоновские представления о времени и пространстве20-
- •3. Золотая пропорция как критерий гармонии22
- •4. Синергетическая парадигма23
- •5. Роль воды в природе и живых организмах24
- •6. Влияние радиационных воздействий на экологию25
- •Концепции современного естествознания
16.3.3. Преобразование биосферы в ноосферу
Переход от биосферы к ноосфере в соответствии с идеями В. И. Вернадского определяется следующими положениями:
этот переход закономерен и неизбежен как естественный ход эволюции независимо от воли человека;
человек рассматривается как составной элемент биосферы и выполняет ее определенные функции во времени и пространстве. Его появление в биосфере означает начало нового этапа в развитии Земли в целом;
не только живое вещество, но и сам человек, вооруженный научной мыслью, становится величайшей геологической силой, кардинально изменяющей облик нашей планеты;
переход от биосферы к ноосфере осуществляется за счет коллективных (когерентных) взаимодействий всех людей и их целостного влияния на природу. В этом смысле человечество действительно стало единым, независимо от расового, географического или имущественного положения. Это взаимодействие с учетом развития техносферы практически мгновенно передается во все уголки земного шара;
необходимость продуманного использования энергетики в обществе. Развитие энергетики, открытие и применение новых видов энергии, нужных человеку для его существования, не должно входить в противоречие с природой и нарушать ее регенера- ционные возможности для поддержания жизни;
• возможность разумного влияния на глобальные процессы, происходящие на Земле, как природного, так и социального характера.
Все эти преобразования по человеческому масштабу времени происходят в течение нескольких поколений, но в геологическом измерении они происходят мгновенно, и их можно, рассматривать как бифуркации в эволюционном процессе.
К анализу эволюции биосферы в ноосферу можно применить физические модели, использующие в первую очередь статистическое понимание процессов в природе и сийергетические представления о нелинейных процессах в открытых системах вдали от равновесия. Образование диссипативных структур связано с когерентным поведением элементов, образующих систему, и обязательным для жизни уменьшением энтропии. Возникающие в результате слабых воздействий неустойчивости, необходимые для эволюции системы, сопровождаются процессами самоорганизации создания из хаотических движений и состояний, в том числе в неживой природе, высокоорганизованных структур живых организмов. Спонтанные процессы самоорганизации живого можно рассматривать как неравновесные кинетические фазовые переходы от неупорядоченного к упорядоченному состоянию через последовательность бифуркаций, развитие которых как раз и проходит через фазы неустойчивостей.
Для биологических объектов существуют два типа последовательностей бифуркаций. Один вызван неограниченным антропогенным воздействием, другой — ограниченными изменениями при естественном протекании процессов в биосфере. Примером первого типа бифуркаций является биоценоз небольших озер. С ростом загрязнений наблюдаются последовательные скачкообразные изменения в составе популяций и их взаимосвязях. При определенных концентрациях загрязненных веществ жизнь в озере полностью прекращается и оно гибнет, становится мертвым. К другим примерам этого типа можно отнести плотины на больших и полноводных русских реках, дамбу в Финском заливе, в заливе Кара-Богаз-Гол на Каспийском море и др.
При естественном протекании процессов по второму типу идет бесконечная смена одних устойчивых состояний, одних форм другими через неустойчивости, когда управляющие этими процессами малые параметры находятся в ограниченном диапазоне их изменений. Это соответствует естественному ходу эволюции живых систем к состояниям, далеким от равновесия, что физически обусловливается обменом веществ, энергией и информацией в них как открытых системах.
При любой последовательности бифуркаций система каждый раз делает случайный, но тем не менее необратимый выбор. Если система находится в некоторой точке той или иной ветви дерева бифуркаций, то это означает, что она прошла весь путь, отделяющий ее от первой бифуркации, через все промежуточные точки и в историческом развитии и измерении должна помнить свой путь. В этом заключается синергетическое понимание памяти. Последующая эволюция в значительной степени является следствием выбора в прошлом.
Наследственная информация живых организмов в виде последовательности оснований в молекулах нуклеиновых кислот в ядрах клеток создавалась в ходе эволюции в прошлом и с учетом ее участвует в эволюции в будущем. В этом смысле точки бифуркаций являются источниками инновации и диверсификации. Количество информации, которое содержит живой организм, определяется степенью его упорядоченности. При этом усложнение организма за счет получения информации уменьшает энтропию. А поскольку все живое борется против энтропии, то получение новой полезной информации (в этом, собственно, суть образования и науки) и есть борьба за жизнь!
В ноосфере так же, как и в биосфере, происходит замкнутый круговорот веществ, все утилизируется, снова переходит в полезный продукт и используется, но при этом человек активно участвует в этом процессе. Сам человек, его производительные силы становятся частью ноосферы, непрерывно обмениваются веществом, энергией и информацией с биосферой. Человек перестает быть просто потребителем, живущим только за счет биосферы, угнетающим и подавляющим ее. Он становится звеном в сложной системе «неживая природа — живая природа — человек — мышление человека». Предполагается, что каждый компонент системы вносит вклад в некое общее энергоинформационное поле, и тогда ноосферу можно рассматривать не только как сумму человеческих знаний, но и как физическое существование в пространстве совокупной информации продукта человеческого разума.
Ноосфера, как более высокоорганизованное состояние биосферы, может возникнуть и существовать только, если ее развитие проходит сознательно, направляется и организуется научной мыслью. В связи с этим резко возрастает роль науки как коллективного разума во всех областях человеческой деятельности, в том числе в овладении всеми формами движения материи, создании новых живых организмов методами генной инженерии И биотехнологии. Однако очень важно, чтобы направленное и согласованное развитие человека и окружающей его среды происходило коэволюционно и с учетом изменения характера взаимоотношений человека с природой. Это определяется возможностями человеческого интеллекта, который обязан взять на себя заботу и ответственность за судьбу нашей планеты.
