- •В. В. Горбачев концепции современного естествознания
- •Глава 1
- •Владимир Иванович Вернадский
- •1.1.1. Программа Платона
- •1.1.2. Представления Аристотеля
- •1.1.3. Модель Демокрита
- •.1.2. Проблемы естествознания на пути познания мира
- •1.2.1.Физический рационализм
- •1.2.2. Методы познания
- •1.2.3. Целостное восприятие мира
- •1.2.4. Физика и восточный мистицизм
- •1.2.5. Взаимосвязь естественных и гуманитарных наук
- •Верп ер Гейзенберг
- •1.2.6. Синергетические представления
- •1.2.7. Универсальный принцип естествознания — принцип дополнительности Бора
- •Нильс Бор
- •Глава 2 механика дискретных объектов я. Смородстнский
- •2.1. Трехмерность пространства
- •2.2. Пространство и время
- •Исаак Ньютон
- •2.3. Особенности механики Ньютона
- •2.4. Движение в механике
- •2.5. Законы Ньютона — Галилея
- •2.6. Законы сохранения
- •2.7. Принципы оптимальности
- •2.8. Механическая картина мира
- •Глава 3 физика полей
- •3.1. Определение понятия поля
- •3.2. Законы Фарадея — Максвелла для электромагнетизма
- •3.3. Электромагнитное поле
- •3.4. Гравитационное поле
- •3.5. Электромагнитная картина мира
- •4.1. Физические начала специальной теории относительности (сто)
- •4.1.1. Постулаты а. Эйнштейна в сто
- •4.1.2. Принцип относительности г. Галилея
- •4.1.3. Теория относительности и инвариантность времени
- •4.1.4. Постоянство скорости света
- •4.1.5. Преобразования г. Лоренца
- •4.1.6. Изменение длины и длительности времени в сто
- •4.1.7. «Парадокс близнецов»
- •4.1.8. Изменение массы в сто
- •4.2. Общая теория относительности (ото)
- •4.2.1. Постулаты ото
- •4.2.2. Экспериментальная проверка ото
- •4.2.3. Гравитация и искривление пространства
- •Глава 5
- •5.1. Описание процессов в микромире
- •5.2. Необходимость введения квантовой механики
- •5.3. Гипотеза Планка
- •Макс Планк
- •5.4. Измерения в квантовой механике
- •Вольфганг Паули
- •5.6. Квантовая механика и обратимость времени
- •5.7. Квантовая электродинамика
- •Глава 6 физика вселенной с. Вайнберг
- •6.1. Космологическая модель а. Эйнштейна — а.А. Фридмана
- •6.2. Другие модели происхождения Вселенной
- •6.2.1. Модель Большого Взрыва
- •Георгий Антонович Гамое
- •6.2.2. Реликтовое излучение
- •6.2.3. Расширяется или сжимается Вселенная?
- •6.2.4. Сценарий развития Вселенной после Большого Взрыва
- •6.3. Современные представления об элементарных частицах как первооснове строения материи Вселенной
- •6.3.1. Классификация элементарных частиц
- •6.3.2. Кварковая модель
- •6.4. Фундаментальные взаимодействия и мировые константы
- •6.4.1. Мировые константы
- •6.4.2. Фундаментальные взаимодействия и их роль в природе
- •6.4.3. Из чего же состоит вещество Вселенной?
- •6.4.4. Черные дыры
- •6.5. Модель единого физического поля и многомерность пространства—времени
- •6.5.1. Возможность многомерности пространства
- •6.6. Устойчивость Вселенной и антропный принцип
- •6.6.1. Множественность миров
- •6.6.2. Иерархичность структуры Вселенной
- •10 Рис. 6.6. Масштабы Вселенной
- •6.7. Антивещество во Вселенной и антигалактики
- •6.8. Механизм образования и эволюции звезд
- •6.8.1. Протон-протонный цикл
- •6.8.2. Углеродо-азотный цикл
- •6.8.3. Эволюция звезд
- •6.8.4. Пульсары
- •6.8.5. Квазары
- •Глава 7
- •7.1. Неравновесная термодинамика и синергетика
- •7.2. Динамика хаоса и порядка
- •7.3. Модель э. Лоренца
- •7.4. Диссипативные структуры
- •7.5. Ячейки Бенара
- •7.6. Реакции Белоусова — Жаботинского
- •7.7. Динамический хаос
- •7.8. Фазовое пространство
- •7.9. Аттракторы
- •7.10. Режим с обострением [
- •7.11. Модель Пуанкаре описания изменения состояния системы
- •7.12. Динамические неустойчивости
- •7.13. Изменение энергии при эволюции системы
- •7.14. Гармония хаоса и порядка и «золотое сечение»
- •Леонардо да Винчи
- •7.15. Открытые системы
- •7.16. Принцип производства минимума энтропии
- •Глава 8
- •8.1. Симметрия и законы сохранения
- •8.2. Симметрия—асимметрия
- •8.3. Закон сохранения электрического заряда
- •8.4. Зеркальная симметрия
- •8.5. Другие виды симметрии
- •8.6. Хиральность живой и неживой природы
- •8.7. Симметрия и энтропия
- •Глава 9 современная естественно-научная картина мира с позиции физики р. Фейнман
- •9.1. Классификация механик
- •9.2. Современная физическая картина мира
- •Часть вторая физика живого и эволюция природы и общества
- •Глава 10
- •Глава 11
- •11.1. Термодинамические особенности развития живых систем
- •11.1.1. Роль энтропии для живых организмов
- •11.1.2. Неустойчивость как фактор развития живого
- •11.2. Энергетический подход к описанию живого
- •11.2.1. Устойчивое неравновесие
- •11.3.1. Иерархия уровней организации живого
- •11.3.2. Метод Фибоначчи как фактор гармонической самоорганизации
- •11.3.3. Физический и биологический методы изучения природы живого
- •11.3.4. Антропный принцип в физике живого
- •11.3.5. Физическая эволюция л. Больцмана и биологическая эволюция ч. Дарвина
- •11.4.1. Физические модели в биологии
- •11.4.2. Физические факторы развития живого
- •11.5. Пространство и время для живых организмов
- •11.5.1. Связь пространства и энергии для живого
- •11.5.2. Биологическое время живой системы
- •11.5.3. Психологическое время живых организмов
- •11.6. Энтропия и информация в живых системах
- •11.6.1. Ценность информации
- •11.6.2. Кибернетический подход к описанию живого
- •11.6.3. Роль физических законов в понимании живого
- •Глава 12
- •12.1. От атомов к протожизни
- •12.1.1. Гипотезы происхождения жизни
- •12.1.2. Необходимые факторы возникновения жизни
- •12.1.3. Теория абиогенного происхождения жизни а.И. Опарина
- •12.1.4. Гетеротрофы и автотрофы
- •12.2.2. Аминокислоты
- •12.2.3. Теория химической эволюции в биогенезе
- •12.2.4. Теория молекулярной самоорганизации м. Эйгена
- •12.2.5. Циклическая организация химических реакций и гиперциклы
- •12. 3. Биохимические составляющие живого вещества
- •12.3.1. Молекулы живой природы
- •12.3.2. Мономеры и макромолекулы
- •12.3.3. Белки
- •12.3.4. Нуклеиновые кислоты
- •12.3.5. Углеводы
- •12.3.6. Липиды
- •12.3.7. Роль воды для живых организмов
- •12.4. Клетка как элементарная частица молекулярной биологии
- •12.4.1. Строение клетки
- •12.4.2. Процессы в клетке
- •12.4.4. Фотосинтез
- •12.4.5. Деление клеток и образование организма
- •12.5. Роль асимметрии в возникновении живого
- •12.5.1. Оптическая активность вещества и хиральность
- •12.5.2. Гомохиральность и самоорганизация в живых организмах
- •Глава 13 физические принципы воспроизводства и развития живых систем
- •13.1. Информационные молекулы наследственности
- •13.1.2. Гены и квантовый мир
- •13.2. Воспроизводство и наследование признаков
- •13.2.2. Законы генетики г. Менделя
- •13.2.3. Хромосомная теория наследственности
- •13.3. Процессы мутагенеза и передача наследственной информации
- •13.3.1. Мутации и радиационный мутагенез
- •13.3.2. Мутации и развитие организма
- •13.4. Матричный принцип синтеза информационных макромолекул и молекулярная генетик
- •13.4.1. Передача наследственной информации через репликации
- •13.4.2. Матричный синтез путем конвариантной редупликации
- •13.4.3. Транскрипция *
- •13.4.6. Новый механизм передачи наследственной информации и прионные болезни
- •Глава 14 физическое понимание эволюционного и индивидуального развития организмов Отличить живое от неживого легче всего на рынке: за живую и дохлую лошадь дают разную цену.
- •14.1. Онтогенез и филогенез. Онтогенетический и популяционный уровни организации жизни
- •14.1.1. Закон Геккеля для онтогенеза и филогенеза
- •14.1.2. Онтогенетический уровень жизни
- •14.1.3. Популяции и лопуляционно-видовой уровень живого
- •14.2. Физическое представление эволюции
- •14.2.1. Синтетическая теория эволюции
- •14.2.4. Живой организм в индивидуальном и историческом развитии
- •14.2.5. Геологическая эволюция и общая схема эволюции Земли по н.Н. Моисееву
- •14.3. Аксиомы биологии
- •14.3.1. Первая аксиома
- •14.3.3. Третья аксиома
- •14.3.4. Четвертая аксиома
- •14.3.5. Физические представления аксиом биологии
- •14.4. Признаки живого и определения жизни
- •14.4.1. Совокупность признаков живого
- •14.4.2. Определения жизни
- •14.5. Физическая модель демографического развития с.П. Капиц
- •Глава 15 физические и информационные поля биологических структур
- •15.1. Физические поля и излучения функционирующего организма человека
- •15.1.1. Электромагнитные поля и излучения живого организма
- •15.1.2. Тепловое и другие виды излучений
- •15.2. Механизм взаимодействия излучений человека с окружающей средой
- •15.2.1. Электромагнитное и ионизирующее излучения
- •15.2.2. Возможности медицинской диагностики и лечения на основе излучений из организма человека
- •15.3.1. Физические процессы передачи информационного сигнала в живом организме
- •15.3.2. Физическая основа памяти
- •15.3.3. Человеческий мозг и компьютер
- •Глава 16 физические аспекты биосферы и основы экологии
- •16.1. Структурная организованность биосферы
- •16.1.1. Биоценозы
- •16.1.2. Геоценозы и биогеоценозы. Экосистемы
- •16.1.4. Биологический круговорот веществ в природе
- •16.1.5. Роль энергии в эволюции
- •16.2.1. Живое вещество
- •16.2.2. Биогеохимические принципы в.И. Вернадского
- •16.3.1. Основные этапы эволюции биосферы
- •16.3.3. Преобразование биосферы в ноосферу
- •16.4. Физические факторы влияния Космоса на земные процессы
- •16.4.1. Связь Космоса с Землей
- •Александр Леонидович Чижевский
- •16.5.1. Увеличение антропогенной нагрузки на окружающую среду
- •16.6.1. Оценки устойчивости биосферы
- •16.6.2. Концепция устойчивого развития и необходимость экологического образования
- •Часть третья концепции естествознания в гуманитарных науках
- •Глава 17 общие естественнонаучные принципы и механизмы в эволюционной картине мира
- •17.1. Основные принципы универсального эволюционизма
- •17.2. Универсальный эволюционизм и методология применения дарвиновской триады в эволюции сложных систем любой природы
- •17.3. Универсальный эволюционизм и синергетика
- •17.4. Современный рационализм и универсальный эволюционизм
- •17.5. Физическое понимание теории пассионарности л. Н. Гумилева
- •Глава 18
- •18.1. Возникновение информационного общества
- •18.2. Глобализация и устойчивое развитие
- •18.3. Социосинергетика
- •18.4. Цивилизация и синергетика
- •18.5. Глобализация и синергетический прогноз развития человечества
- •Глава 19
- •19.1. Физические модели самоорганизации в экономике
- •19.2. Экономическая модель длинных волн н. Д. Кондратьева
- •19.3, Обратимость и необратимость процессов в экономике
- •19.4. Синергетические представления устойчивости
- •19.5. Физическое моделирование рынка
- •19.7. Модель колебательных процессов в экономике
- •19.8. Эволюционный менеджмент
- •Заключение эволюционно-синергетическая парадигма: от целостного естествознания к целостной культуре
- •1. Ньютоновские представления о времени и пространстве20-
- •3. Золотая пропорция как критерий гармонии22
- •4. Синергетическая парадигма23
- •5. Роль воды в природе и живых организмах24
- •6. Влияние радиационных воздействий на экологию25
- •Концепции современного естествознания
14.2. Физическое представление эволюции
Стимулирующее действие хорошей гипотезы прямо пропорцио- нально ее необоснованности.
В.Я. Александров
14.2.1. Синтетическая теория эволюции
Раскрытие генетического кода и установление закономерностей молекулярной биологии показало необходимость соединения современной генетики и дарвиновской теории эволюции. Так родилась новая биологическая парадигма — синтетическая теория эволюции (СТЭ), которую можно рассматривать уже как неклассическую биологию. Хотя до настоящего времени не создана физическая модель эволюции в СТЭ, но так же, как в целом в физике живого (и как мы неоднократно это обсуждали), могут быть использованы синергетические идеи развития сложных самоорганизующихся систем и квантовые принципы. В частности, в активизации процессов самоорганизации и усложнении структуры живого организма состоит суть его эволюции. Причем эта самоорганизация в биологических объектах происходит с непревзойденными точностью, эффективностью и скоростью и тем самым является характеристикой эволюции живой природы.
Как
жаль, что мы живем недоста^: точно долго,
чтобы пальзоватьф/й уроками своих
ошибок.
Ж.
де Ла
Из-за вероятностного характера возникновения мутаций, подчиняющихся законам статистической физики, их нельзя считать основным фактором эволюции, так как они только влияют на изменчивость генотипа, и поэтому мутационный процесс приводит к образованию и полезных, и вредных генов, которые как бы составляют фонд наследственной изменчивости. Следовательно, изменчивость на молекулярно-генетическом уровне также не является фактором эволюции и естественный отбор на этом уровне не работает. Полезность изменчивости будет определяться естественным отбором особей, наиболее приспособленных к жизни в конкретных условиях. Естественный отбор будет действовать непосредственно на фенотип живого организма и тем самым начнет проявляться уже на онтогенетическом уровне организации живого.
Как отмечал Н.Н. Моисеев [122], изменчивость создает поле возможностей развития той или иной живой системы, наследственность ограничивает это поле, но отбирает реализующий вариант эволюции по некоторым правилам или принципам. Принципы этого отбора — законы физики, биологии, общественного развития, с помощью которых с какой-то вероятностью из допустимых значений отбираются значения, наблюдаемые нами в реальности. К таким же правилам отбора относятся и те следствия человеческого опыта, на которые мы опираемся в своей практической деятельности, принимая те или иные решения. Заметим, что с физической точки зрения в основе этих принципов лежат законы сохранения, а сами фундаментальные принципы имеют запретительный характер: никакие изменения не могут идти вопреки закону изменения энергии и закону сохранения количества движения. Как отмечалось в первой части данного курса, законы различных механик (классической, квантовой и релятивистской) также имеют ограничительный характер и справедливы лишь для определенных условий.*21
14.2.2. Эволюция популяций
В рамках СТЭ и в целом эволюции всей биосферы элементарной единицей эволюции считается уже не особь, а совокупность особей одного вида, способных скрещиваться между собой, т.е. популяция. Мутировавший ген создает у особи новый признак. Если он полезен для популяции, он закрепляется в ней. Эффективность процесса будет определяться частотой возникновения в популяции признака и некоторым параметром Е, который в модельном представлении эволюции описывает состояния особей в популяции. В работах JI.А. Шелепина [31, 114] предложена модель эволюции популяции и проведен аналйз состояний популяций в зависимости от конкретных условий.
Популяции рассматриваются как целое по отношению к ресурсам, хищникам для данной популяции и к внешним условиям, а сами особи выступают как своего рода неразличимые молекулы. При анализе распределения особей внутри популяции выделяются четыре основные стратегии адаптации:
первая реализуется в условиях достаточного ресурса и отсутствия хищников. Для нее характерны экспоненциальный рост численности, активность к расселению, высокая скорость метаболизма;
вторая осуществляется в условиях конкуренции, ограниченности территории и наличия хищников, при этом проявляются определенное самолимитирование и уменьшение прироста численности с увеличением популяции в условиях конкурентности, отбор особей по силовым,, размерным, скоростным качествам и умеренный метаболизм;
третья проходит при ухудшающихся неблагоприятных условиях, недостатке ресурсов, прессинге хищников и приводит к существенным изменениям скорости метаболизма, запасанию корма, поиску убежища, спячке;
четвертая стадия идет при крайне неблагоприятных условиях, при этом возникают качественные изменения особей и популяции в целом, появляются мутанты и происходит переход в новую экологическую нишу.
В рамках популяции имеют место в той или иной степени все четыре стратегии ее развития. Переходы от одной стадии к другой идут в зависимости от внутренних и внешних условий.
Параметр е как раз и характеризует состояние популяции в процессе ее эволюции. С ростом е популяции проходят все четыре стратегии. При достижении некоторого критического значения е0 происходят генетические преобразования. Измененные организмы уходят в новую экологическую нишу и закрепляются в ней — формируется новый вид. Поскольку процессы появления и закрепления признаков на разных стадиях носят случайный, статистический характер, состояние популяции может быть задано функцией распределения N (е, г, /), где г — пространственная координата, t — текущее время. При изменении определяющих факторов эволюции в пространстве и времени на каждой стадии развития, которая и выражается через введенный параметр е, происходит общий процесс перераспределения особей в популяции по состояниям от комфортных условий до генетических преобразований в пределах 0 < е < е0.
Функция распределения особей в популяции может быть описана больцмановским распределением по е в рамках представлений статистической физики:
N = N0&'£/T,
где Т — некая «популяционная температура»^ также характеризующая энергетическое состояние популяций. При малых Г популяция находится в комфортных условиях. С ростом Т наступают мутагенные и соматические изменения у все возрастающего числа особей и численность популяции, достигнув насыщения, постепенно начинает уменьшаться. При достижении некоторого критического значения Ткр, когда резко возрастает вариабельность (число и подвижность приобретаемых изменений и признаков), популяция либо прекращает свое существование, либо, изменяясь, переходит в новое состояние, новую экологическую нишу.
В общем случае изменение функции N (е, г, t), характеризующей изменения в состоянии популяции, описывается так называемым уравнением Фоккера—Планка с учетом источников N, задающих процессы рождения и гибели особей. Таким образом, генетические преобразования и эволюция в целом происходят в значительной мере через изменение состояния популяции. При некоторых значениях е в организмах создаются условия для мутаций. В этом смысле мутации определяются условиями существования популяций. Комплексный анализ такой взаимосвязи имеет большое значение при рассмотрении эволюции живого мира.
В СТЭ существуют представления о микро- и макроэволюции. Микроэволюция связана с необратимыми преобразованиями генетико-экологической структуры популяции, которые могут привести к формированию нового вида. Макроэволюция изучает основные направления и закономерности развития жизни на Земле и происхождение человека как биологического вида, и таким образом осуществляется через процессы микроэволюции. В рамках системного подхода и ту, и другую можно описать через элементарные явления и ведущие факторы.
14.2.3. Элементарные факторы эволюции
Н.В. Тимофеев-Ресовский [172—175] сформулировал представления об элементарных явлениях и факторах эволюции в следующих основных положениях. В качестве элементарной эволюционной структуры выступает популяция. Изменение геноти- пического состава популяции наблюдается в виде элементарного эволюционного явления. Сам генофонд есть элементарный эволюционный материал. И наконец, существуют элементарные эволюционные факторы — мутационный процесс, популяционные волны, изоляция, естественный отбор.
Мутационный процесс, как мы убедились, хотя и является, так сказать, поставщиком элементарного эволюционного материала, не оказывает направляющего воздействия на ход эволюционного процесса. Существенное влияние на эволюцию популяций оказывают популяционные волны, или «волны жизни», которые представляют собой количественные колебания в численности популяций под воздействием различных проявлений внешней среды — сезонных изменений климата, различных природных или техногенных катастроф и т.д. С одной стороны, это приводит к изменению частоты повторяемости генов в популяциях и как следствие — к снижению наследственной изменчивости. Этот процесс иногда называют дрейфом генов. С другой стороны — к изменениям концентрации различных мутаций и уменьшению разнообразия генотипов, содержащихся в популяции, что может вызвать изменения направленности и интенсивности действия отбора. В этом смысле популяционные волны не дают вполне определенного хода эволюции.
Третий фактор эволюции — изоляция — нарушает свободное скрещивание и закрепляет как случайно возникшие, так и возникшие под действием отбора изменения в наборах признаков и численности генотипов в различных частях популяции. Изоляция может возникать по пространственно-географическому и биологическому (репродуктивному) признакам. Существует пять форм различия: биологическая изоляция по поведению особей (этологическая), по предпочтению разных мест обитания (экологическая), по сезонности в сроках размножения (сезонная), по размерам и структуре тела (морфологическая) и по различию наследственного аппарата, связанного с несовместимостью половых клеток (генетическая). Общим итогом изоляции может быть возникновение независимых генофондов двух популяций, которые могут впоследствии развиться в независимые виды. Направленной эволюции этот фактор также не обеспечивает.
Естественный отбор, четвертый элементарный эволюционный фактор, проявляется в дифференцированном, направленном сохранении в популяции определенных генотипов и их избирательном участии в передаче следующему поколению. Как мы уже отмечали, этот процесс идет на уровне целого живого организма и закрепления признаков в особях и популяции. Таким образом, естественный отбор, являясь направленным фактором, определяет направление движения всей биосферы, ее развитие в процессе становления порядка из хаоса. Согласно И.И. Шмальгаузену [195], естественный отбор может реализовы- ваться в движущей и стабилизирующей формах.
Движущий отбор в результате действия мутаций и окружающей среды для популяции производит закономерное изменение ее в определенном направлении, стабилизирующий отбор совершенствует индивидуальное развитие особей, не меняя признаков организмов. Это как бы защитный аппарат от возможных случайных нарушений во внутренней и внешней средах, и он связан с выработкой более устойчивых механизмов нормального формообразования. Во всех этих механизмах эволюции в организмах и их совокупностях — популяциях — сохраняются основные законы жизни: развитие при сохранении устойчивости, стабильности различных форм жизни.
