- •В. В. Горбачев концепции современного естествознания
- •Глава 1
- •Владимир Иванович Вернадский
- •1.1.1. Программа Платона
- •1.1.2. Представления Аристотеля
- •1.1.3. Модель Демокрита
- •.1.2. Проблемы естествознания на пути познания мира
- •1.2.1.Физический рационализм
- •1.2.2. Методы познания
- •1.2.3. Целостное восприятие мира
- •1.2.4. Физика и восточный мистицизм
- •1.2.5. Взаимосвязь естественных и гуманитарных наук
- •Верп ер Гейзенберг
- •1.2.6. Синергетические представления
- •1.2.7. Универсальный принцип естествознания — принцип дополнительности Бора
- •Нильс Бор
- •Глава 2 механика дискретных объектов я. Смородстнский
- •2.1. Трехмерность пространства
- •2.2. Пространство и время
- •Исаак Ньютон
- •2.3. Особенности механики Ньютона
- •2.4. Движение в механике
- •2.5. Законы Ньютона — Галилея
- •2.6. Законы сохранения
- •2.7. Принципы оптимальности
- •2.8. Механическая картина мира
- •Глава 3 физика полей
- •3.1. Определение понятия поля
- •3.2. Законы Фарадея — Максвелла для электромагнетизма
- •3.3. Электромагнитное поле
- •3.4. Гравитационное поле
- •3.5. Электромагнитная картина мира
- •4.1. Физические начала специальной теории относительности (сто)
- •4.1.1. Постулаты а. Эйнштейна в сто
- •4.1.2. Принцип относительности г. Галилея
- •4.1.3. Теория относительности и инвариантность времени
- •4.1.4. Постоянство скорости света
- •4.1.5. Преобразования г. Лоренца
- •4.1.6. Изменение длины и длительности времени в сто
- •4.1.7. «Парадокс близнецов»
- •4.1.8. Изменение массы в сто
- •4.2. Общая теория относительности (ото)
- •4.2.1. Постулаты ото
- •4.2.2. Экспериментальная проверка ото
- •4.2.3. Гравитация и искривление пространства
- •Глава 5
- •5.1. Описание процессов в микромире
- •5.2. Необходимость введения квантовой механики
- •5.3. Гипотеза Планка
- •Макс Планк
- •5.4. Измерения в квантовой механике
- •Вольфганг Паули
- •5.6. Квантовая механика и обратимость времени
- •5.7. Квантовая электродинамика
- •Глава 6 физика вселенной с. Вайнберг
- •6.1. Космологическая модель а. Эйнштейна — а.А. Фридмана
- •6.2. Другие модели происхождения Вселенной
- •6.2.1. Модель Большого Взрыва
- •Георгий Антонович Гамое
- •6.2.2. Реликтовое излучение
- •6.2.3. Расширяется или сжимается Вселенная?
- •6.2.4. Сценарий развития Вселенной после Большого Взрыва
- •6.3. Современные представления об элементарных частицах как первооснове строения материи Вселенной
- •6.3.1. Классификация элементарных частиц
- •6.3.2. Кварковая модель
- •6.4. Фундаментальные взаимодействия и мировые константы
- •6.4.1. Мировые константы
- •6.4.2. Фундаментальные взаимодействия и их роль в природе
- •6.4.3. Из чего же состоит вещество Вселенной?
- •6.4.4. Черные дыры
- •6.5. Модель единого физического поля и многомерность пространства—времени
- •6.5.1. Возможность многомерности пространства
- •6.6. Устойчивость Вселенной и антропный принцип
- •6.6.1. Множественность миров
- •6.6.2. Иерархичность структуры Вселенной
- •10 Рис. 6.6. Масштабы Вселенной
- •6.7. Антивещество во Вселенной и антигалактики
- •6.8. Механизм образования и эволюции звезд
- •6.8.1. Протон-протонный цикл
- •6.8.2. Углеродо-азотный цикл
- •6.8.3. Эволюция звезд
- •6.8.4. Пульсары
- •6.8.5. Квазары
- •Глава 7
- •7.1. Неравновесная термодинамика и синергетика
- •7.2. Динамика хаоса и порядка
- •7.3. Модель э. Лоренца
- •7.4. Диссипативные структуры
- •7.5. Ячейки Бенара
- •7.6. Реакции Белоусова — Жаботинского
- •7.7. Динамический хаос
- •7.8. Фазовое пространство
- •7.9. Аттракторы
- •7.10. Режим с обострением [
- •7.11. Модель Пуанкаре описания изменения состояния системы
- •7.12. Динамические неустойчивости
- •7.13. Изменение энергии при эволюции системы
- •7.14. Гармония хаоса и порядка и «золотое сечение»
- •Леонардо да Винчи
- •7.15. Открытые системы
- •7.16. Принцип производства минимума энтропии
- •Глава 8
- •8.1. Симметрия и законы сохранения
- •8.2. Симметрия—асимметрия
- •8.3. Закон сохранения электрического заряда
- •8.4. Зеркальная симметрия
- •8.5. Другие виды симметрии
- •8.6. Хиральность живой и неживой природы
- •8.7. Симметрия и энтропия
- •Глава 9 современная естественно-научная картина мира с позиции физики р. Фейнман
- •9.1. Классификация механик
- •9.2. Современная физическая картина мира
- •Часть вторая физика живого и эволюция природы и общества
- •Глава 10
- •Глава 11
- •11.1. Термодинамические особенности развития живых систем
- •11.1.1. Роль энтропии для живых организмов
- •11.1.2. Неустойчивость как фактор развития живого
- •11.2. Энергетический подход к описанию живого
- •11.2.1. Устойчивое неравновесие
- •11.3.1. Иерархия уровней организации живого
- •11.3.2. Метод Фибоначчи как фактор гармонической самоорганизации
- •11.3.3. Физический и биологический методы изучения природы живого
- •11.3.4. Антропный принцип в физике живого
- •11.3.5. Физическая эволюция л. Больцмана и биологическая эволюция ч. Дарвина
- •11.4.1. Физические модели в биологии
- •11.4.2. Физические факторы развития живого
- •11.5. Пространство и время для живых организмов
- •11.5.1. Связь пространства и энергии для живого
- •11.5.2. Биологическое время живой системы
- •11.5.3. Психологическое время живых организмов
- •11.6. Энтропия и информация в живых системах
- •11.6.1. Ценность информации
- •11.6.2. Кибернетический подход к описанию живого
- •11.6.3. Роль физических законов в понимании живого
- •Глава 12
- •12.1. От атомов к протожизни
- •12.1.1. Гипотезы происхождения жизни
- •12.1.2. Необходимые факторы возникновения жизни
- •12.1.3. Теория абиогенного происхождения жизни а.И. Опарина
- •12.1.4. Гетеротрофы и автотрофы
- •12.2.2. Аминокислоты
- •12.2.3. Теория химической эволюции в биогенезе
- •12.2.4. Теория молекулярной самоорганизации м. Эйгена
- •12.2.5. Циклическая организация химических реакций и гиперциклы
- •12. 3. Биохимические составляющие живого вещества
- •12.3.1. Молекулы живой природы
- •12.3.2. Мономеры и макромолекулы
- •12.3.3. Белки
- •12.3.4. Нуклеиновые кислоты
- •12.3.5. Углеводы
- •12.3.6. Липиды
- •12.3.7. Роль воды для живых организмов
- •12.4. Клетка как элементарная частица молекулярной биологии
- •12.4.1. Строение клетки
- •12.4.2. Процессы в клетке
- •12.4.4. Фотосинтез
- •12.4.5. Деление клеток и образование организма
- •12.5. Роль асимметрии в возникновении живого
- •12.5.1. Оптическая активность вещества и хиральность
- •12.5.2. Гомохиральность и самоорганизация в живых организмах
- •Глава 13 физические принципы воспроизводства и развития живых систем
- •13.1. Информационные молекулы наследственности
- •13.1.2. Гены и квантовый мир
- •13.2. Воспроизводство и наследование признаков
- •13.2.2. Законы генетики г. Менделя
- •13.2.3. Хромосомная теория наследственности
- •13.3. Процессы мутагенеза и передача наследственной информации
- •13.3.1. Мутации и радиационный мутагенез
- •13.3.2. Мутации и развитие организма
- •13.4. Матричный принцип синтеза информационных макромолекул и молекулярная генетик
- •13.4.1. Передача наследственной информации через репликации
- •13.4.2. Матричный синтез путем конвариантной редупликации
- •13.4.3. Транскрипция *
- •13.4.6. Новый механизм передачи наследственной информации и прионные болезни
- •Глава 14 физическое понимание эволюционного и индивидуального развития организмов Отличить живое от неживого легче всего на рынке: за живую и дохлую лошадь дают разную цену.
- •14.1. Онтогенез и филогенез. Онтогенетический и популяционный уровни организации жизни
- •14.1.1. Закон Геккеля для онтогенеза и филогенеза
- •14.1.2. Онтогенетический уровень жизни
- •14.1.3. Популяции и лопуляционно-видовой уровень живого
- •14.2. Физическое представление эволюции
- •14.2.1. Синтетическая теория эволюции
- •14.2.4. Живой организм в индивидуальном и историческом развитии
- •14.2.5. Геологическая эволюция и общая схема эволюции Земли по н.Н. Моисееву
- •14.3. Аксиомы биологии
- •14.3.1. Первая аксиома
- •14.3.3. Третья аксиома
- •14.3.4. Четвертая аксиома
- •14.3.5. Физические представления аксиом биологии
- •14.4. Признаки живого и определения жизни
- •14.4.1. Совокупность признаков живого
- •14.4.2. Определения жизни
- •14.5. Физическая модель демографического развития с.П. Капиц
- •Глава 15 физические и информационные поля биологических структур
- •15.1. Физические поля и излучения функционирующего организма человека
- •15.1.1. Электромагнитные поля и излучения живого организма
- •15.1.2. Тепловое и другие виды излучений
- •15.2. Механизм взаимодействия излучений человека с окружающей средой
- •15.2.1. Электромагнитное и ионизирующее излучения
- •15.2.2. Возможности медицинской диагностики и лечения на основе излучений из организма человека
- •15.3.1. Физические процессы передачи информационного сигнала в живом организме
- •15.3.2. Физическая основа памяти
- •15.3.3. Человеческий мозг и компьютер
- •Глава 16 физические аспекты биосферы и основы экологии
- •16.1. Структурная организованность биосферы
- •16.1.1. Биоценозы
- •16.1.2. Геоценозы и биогеоценозы. Экосистемы
- •16.1.4. Биологический круговорот веществ в природе
- •16.1.5. Роль энергии в эволюции
- •16.2.1. Живое вещество
- •16.2.2. Биогеохимические принципы в.И. Вернадского
- •16.3.1. Основные этапы эволюции биосферы
- •16.3.3. Преобразование биосферы в ноосферу
- •16.4. Физические факторы влияния Космоса на земные процессы
- •16.4.1. Связь Космоса с Землей
- •Александр Леонидович Чижевский
- •16.5.1. Увеличение антропогенной нагрузки на окружающую среду
- •16.6.1. Оценки устойчивости биосферы
- •16.6.2. Концепция устойчивого развития и необходимость экологического образования
- •Часть третья концепции естествознания в гуманитарных науках
- •Глава 17 общие естественнонаучные принципы и механизмы в эволюционной картине мира
- •17.1. Основные принципы универсального эволюционизма
- •17.2. Универсальный эволюционизм и методология применения дарвиновской триады в эволюции сложных систем любой природы
- •17.3. Универсальный эволюционизм и синергетика
- •17.4. Современный рационализм и универсальный эволюционизм
- •17.5. Физическое понимание теории пассионарности л. Н. Гумилева
- •Глава 18
- •18.1. Возникновение информационного общества
- •18.2. Глобализация и устойчивое развитие
- •18.3. Социосинергетика
- •18.4. Цивилизация и синергетика
- •18.5. Глобализация и синергетический прогноз развития человечества
- •Глава 19
- •19.1. Физические модели самоорганизации в экономике
- •19.2. Экономическая модель длинных волн н. Д. Кондратьева
- •19.3, Обратимость и необратимость процессов в экономике
- •19.4. Синергетические представления устойчивости
- •19.5. Физическое моделирование рынка
- •19.7. Модель колебательных процессов в экономике
- •19.8. Эволюционный менеджмент
- •Заключение эволюционно-синергетическая парадигма: от целостного естествознания к целостной культуре
- •1. Ньютоновские представления о времени и пространстве20-
- •3. Золотая пропорция как критерий гармонии22
- •4. Синергетическая парадигма23
- •5. Роль воды в природе и живых организмах24
- •6. Влияние радиационных воздействий на экологию25
- •Концепции современного естествознания
12.4.4. Фотосинтез
Фотосинтез — это процесс запасания солнечной энергии путем образования новых связей в молекулах синтезируемых веществ. Исходными веществами для фотосинтеза являются вода и диоксид углерода. Из этих простых неорганических соединений образуются более сложные, богатые энергией питательные вещества. В качестве побочного, но очень важного продукта образуется молекулярный кислород. Согласно реакции:
Av
6С02 + 6Н20 ► С6Н12 Об + 602f
Хлорофилл
Эта реакция идет за счет поглощения квантов света (М>) и при условии присутствия пигмента хлорофилла, содержащегося в хлоропластах.
В результате получается одна молекула глюкозы С6Н1206 и шесть молекул кислорода. Процесс идет постадийно; сначала на стадии фотолиза при расщеплении воды образуются водород и кислород, а затем водород, соединяясь с углекислым газом, образует углевод — глюкозу С6 Н12 06.
Фотосинтез — преобразование энергии излучения Солнца в энергию химических связей возникающих органических веществ.
Фотосинтез, производящий на свету кислород, является тем биологическим процессом, который обеспечивает живые организмы свободной энергией. Процесс обычного дыхания как процесс обмена веществ в организме, связанный с потреблением кислорода, является обратным процессу фотосинтеза. Оба эти процесса могут идти по следующей цепочке:
С02 + Н2 О + солнечная энергия
фотосинтез питательные вещества + 02 дыхание
С02 + Н2 О + энергия химических связей
Конечные продукты дыхания служат исходными соединениями для фотосинтеза. Процессы фотосинтеза и дыхания участвуют в круговороте веществ в природе. Часть солнечного излучения поглощается растениями и некоторыми организмами, которые являются автотрофами, т.е. самопитающимися (питание для них — солнечный свет). В результате процесса фотосинтеза автотрофы связывают углекислый газ атмосферы и воду, образуя до 150 млрд тонн органических веществ, усваивая до 300 млрд тонн С02, и выделяют около 200 млрд тонн свободного кислорода ежегодно.
Полученные органические вещества употребляют в качестве пищи человек и травоядные животные, которыми, в свою очередь, питаются другие гетеротрофы. Растительные и животные остатки затем разлагаются до простых неорганических веществ, которые снова могут участвовать в виде С02 и Н20 в фотосинтезе. Часть получающейся энергии, в том числе запасенной в виде ископаемого энергетического топлива, идет на потребление ее живыми организмами, часть бесполезно рассеивается в окружающую среду. Поэтому процесс фотосинтеза благодаря обеспечению им необходимой энергии и кислорода является на определенном этапе развития биосферы Земли «катализатором» эволюции живого.
12.4.5. Деление клеток и образование организма
Строением и изучением клеток биологи занимаются уже более 150 лет, и в первую очередь это немецкие ученые — ботаник М. Шлейден (1804 — 1881), физиолог Т. Швами (1810 — 1882), биолог Я. Пуркине (1787—1869) и патологоанатом Р. Вирхов (1821—1902), который в 1855 г. установил механизм роста клеток путем их деления. Было установлено, что каждый организм развивается из одной клетки, которая начинает делиться, и в результате этого образуется множество клеток, заметно отличающихся друг от друга. Поскольку развитие организма началось от деления первой клетки, то на одном из этапов нашего жизненного цикла мы сохраняем сходство с очень отдаленным одноклеточным предком, и в шутку можно сказать, что мы скорее произошли от амебы, чем от обезьяны.
Из клеток формируются органы, и у системы клеток появляются такие качества, которых нет у составляющих ее элементов, т.е. отдельных клеток. Эти отличия обусловлены набором белков, синтезируемых данной клеткой. Бывают клетки мышечные, нервные, кровяные (эритроциты), эпителиальные и другие — в зависимости от своей функциональности. Дифференцирование клеток происходит постепенно в процессе развития организма. В процессе деления клеток (рис. 12.15), их жизни и гибели вклеточный цикл
Длинный I " цикл j
ГУ
\ /s
Точки
. инициации
Новые
точки j
инициации
л
НАЧАЛО 1-го цикла
Переменный
период, предшествующий инициации, 20 —220 мин
Постоянный период репликации ДНК, 40 мин
Постоянный период клеточного деления, 20 мин
НАЧАЛО 2-го цикл
а
КЛЕТОЧНЫЙ ЦИКЛ У ПРОКАРИОТ
ДЕЛЕНИЕ КЛЕТОК
клеточный цикл у эукарио
т
S-фаза
9)
О
-фаза
ч
0,-фаза
л^итоз
%
Ядра
чч
Ядро
Ядерная
мембрана
Центриоль
Микротрубочки,
образующие «митотическое веретено»
\
Хромосомы/'
Дочерняя
центриоль
Рис.
12.15. Клеточный цикл.
ПРОФАЗА
ИНТЕРФАЗА
атечение всей жизни организма происходит непрерывная замена клеток.
Ни одна молекула в нашем теле не остается неизменной дольше нескольких недель или месяцев. За это время молекулы синтезируются, выполняют свою роль в жизни клетки, разрушаются и заменяются другими более или менее идентичными молекулами. Самое удивительное, что живые организмы в целом значительно более постоянны, чем составляющие их молекулы, и строение клеток и всего тела, состоящего из этих клеток, остается в этом безостановочном круговороте неизменным, несмотря на замену отдельных компонентов. Причем это не замена отдельных деталей автомобиля, а, как образно сравнивает С. Роуз [159], — тело с кирпичной постройкой, «из которой сумасшедший каменщик непрерывно ночью и днем вынимает один кирпич за другим и вставляет на их место новые. При этом наружный вид постройки остается прежним, а материал постоянно заменяется». Мы рождаемся с одними нейронами и клетками, а умираем с другими. Примером может служить сознание, понимание и восприятие ребенка и старого человека. Во всех клетках имеется полная генетическая информация для построения всех белков данного организма. Хранение и передача наследственной информации осуществляются с помощью клеточного ядра.
В клетке каждого типа синтезируются только те белки, которые ей нужны. Многие гены в клетке не работают, только часть из них участвует в синтезе соответствующих белков. По современным представлениям клеточной биологии только 3% молекул ДНК участвует, так сказать, в «программном обеспечении» построения белков, а 97% не являются источниками информации, они выполняют роль матричной копировальной машины. По выражению российского биолога B.C. Репина, «вся биологическая информация разбросана крошечными островками смысла, вкрапленными в океаны бессмыслицы и информационной пустоты материнских и отцовских хромосом». Возникает два вопроса. К чему такая избыточность ДНК, не несущей непосредственно информации для конкретной клетки? Зачем так настойчиво хранится и материализуется этот огромный резерв ДНК, который участвует в функционирований клетки, особенно если учесть всеобщие для природы принципы оптимальности расходования энергии, требуемой для укладки огромного количества ДНК в объем клеточного ядра? Но, как сказал В. В. Маяковский, «если звезды зажигают, значит, это кому-нибудь нужно». Ответы на эти вопросы должны дать специалисты по молекулярной биологии.
Интересен еще один вопрос: почему малое количество генов обеспечивает почти бесконечное функциональное разнообразие клеток? Предполагают, что одна и та же молекула мРНК дает от 5 до 20 разных белков за счет перестановки элементов матрицы — заготовки ДНК. В мире белков клетка действует как архитектор, создавая по двумерным чертежам трехмерные, объемные конструкции. Плазматическую мембрану клеток можно' сравнить с клавиатурой рояля или дисплеем ЭВМ, которые сортируют всю поступающую информацию от случайных сигналов для принятия решений. Мембрана выступает в качестве своеобразного биочипа.
Если же продолжить сравнения, то клетку можно представить как высокоспециализированный завод, выпускающий биомолекулы по плану, выработанному природой в процессе эволюции, фабрикой по производству жизни, где каждый элемент клетки имеет свое функциональное предназначение. Мембрана — это пропускные ворота, куда подается полуфабрикат, а вывозится «готовый продукт». Белки — ферменты, которые регулируют выполнение плана, выполняют роль заводоуправления. Главным «технологом» является ДНК, которые осуществляют через молекулы РНК план реализации технологии биосинтеза белков с участием ферментов и нуклеиновых кислот, следят за технологическими условиями водной среды клеток, температурой, давлением, электрическим потенциалом. А самоорганизация выступает в роли сбалансированного общего технологического процесса.
Жизнь любого организма поддерживается энергетическим потенциалом клеток и их взаимодействием, а благодаря информации живая система сохраняет целостность и гармонию своих элементов в процессе своей жизнедеятельности. Клетки, как элементарные самоорганизующиеся системы, функционируют по принципу достижения оптимальных результатов в условиях жизнедеятельности. Механизмы целесообразного саморегулирования жизнедеятельности клетки формируются в процессе ее развития и изменяются под влиянием более высоких уровней организации со стороны тканей, органов и всего организма.
Генетиками был разработан метод, с помощью которого можно определить биологический возраст человека, зная энергетический заряд клеток. Оказалось, что наши клетки могут подсказать каждому человеку, как себя вести, чтобы прожить более активную и долгую жизнь, поскольку их энергонасыщенность меняется в ответ на повреждающие или стимулирующие факторы, например алкоголь, кофе, спорт, закаливание. Воздействие этих факторов обусловлено изменением электропотенциала ядер — клеток так называемого буккального эпителия. Этим методом можно также определить на клеточном уровне влияние режима труда, отдыха, связи болезней с лечением, воздействия внешних физических полей. Открытие биофизических свойств ядер клеток позволяет на микроуровне изучать связь живого с энергией.
