
- •Isbn 5-329-00647-3 (ооо «Издательский дом «оникс 21 век») isbn 5-94666-055-1
- •Часть I. Физические основы строения материального мира
- •Глава 1. Общие представления об естествознании ........................................... 12
- •Глава 2. Механика дискретных объектов.................................................................. 32
- •Глава 3. Физика полей .............................................................................................................. 49
- •Глава 4. Теория относительности эйнштейна — мост между
- •Глава 5. Основы квантовой механики и квантовой электродинамики
- •Глава 6. Физика вселенной................................................................................................... 77
- •Глава 7. Проблема «порядок—беспорядок» в природе и обществе.
- •Глава 8. Симметрия и асимметрия в различных физических
- •Глава 9. Современная естественно-научная картина мира с позиции
- •Часть II. Физика живого и эволюция природы и общества 145
- •Глава 10. Общие проблемы физики живого ............................................................ 145
- •Глава 11. От физики существующего к физике возникающего ............. 146
- •Глава 12. Физические аспекты и принципы биологии .................................. 172
- •Глава 13. Физические принципы воспроизводства и развития живых
- •Глава 14. Физическое понимание эволюционного и
- •Глава 15. Физические и информационные поля биологических
- •Глава 16ю физические аспекты биосферы и основы экологии.............. 265
- •Глава 17. Физические модели самоорганизации в экономике............... 285
- •Часть I. Физические основы строения
- •Глава 1. Общие представления об естествознании
- •1.1. Этапы развития и становления естествознания
- •1.1.1. Программа Платона
- •1.1.2. Представления Аристотеля
- •1.1.3. Модель Демокрита
- •1.2. Проблемы естествознания на пути познания мира
- •1.2.1. Физический рационализм
- •1.2.2. Методы познания
- •1.2.3. Целостное восприятие мира
- •1.2.4. Физика и восточный мистицизм
- •1.2.5. Взаимосвязь естественных и гуманитарных наук
- •1.2.6. Синергетическая парадигма
- •1.2.7. Универсальный принцип естествознания — принцип
- •Глава 2. Механика дискретных объектов
- •2.1. Трехмерность пространства
- •2.2. Пространство и время
- •2.3. Особенности механики Ньютона
- •2.4. Движение в механике
- •2.5. Законы Ньютона — Галилея
- •2.6. Законы сохранения
- •2.7. Принципы оптимальности
- •2.8. Механическая картина мира
- •Глава 3. Физика полей
- •3.1. Определение понятия поля
- •3.2. Законы Фарадея — Максвелла для электромагнетизма
- •3.3. Электромагнитное поле
- •3.4. Гравитационное поле
- •3.5. Электромагнитная картина мира
- •Глава 4. Теория относительности эйнштейна —
- •4.1. Физические начала специальной теории относительности (сто)
- •4.1.1. Постулаты а. Эйнштейна в сто
- •4.1.2. Принцип относительности г. Галилея
- •4.1.3. Теория относительности и инвариантность времени
- •4.1.4. Постоянство скорости света
- •4.1.5. Преобразования г. Лоренца
- •4.1.6. Изменение длины и длительности времени в сто
- •4.1.7. «Парадокс близнецов»
- •4.1.8. Изменение массы в сто
- •4.2. Общая теория относительности (ото)
- •4.2.1. Постулаты ото
- •4.2.2. Экспериментальная проверка ото
- •4.2.3. Гравитация и искривление пространства
- •4.2.4. Основные итоги основ теории относительности
- •Глава 5. Основы квантовой механики и квантовой
- •5.1. Описание процессов в микромире
- •5.2. Необходимость введения квантовой механики
- •5.3. Гипотеза Планка
- •5.4. Измерения в квантовой механике
- •5.5. Волновая функция и принцип неопределенности в. Гейзенберга
- •5.6. Квантовая механика и обратимость времени
- •5.7. Квантовая электродинамика
- •Глава 6. Физика вселенной
- •6.1. Космологическая модель а. Эйнштейна — a.A. Фридмана
- •6.2. Другие модели происхождения Вселенной
- •6.2.1. Модель Большого Взрыва
- •6.2.2. Реликтовое излучение
- •6.2.3. Расширяется или сжимается Вселенная?
- •6.2.4. Сценарий развития Вселенной после Большого Взрыва
- •6.2.5. Модель раздувающейся Вселенной
- •6.3. Современные представления об элементарных частицах как
- •6.3.1. Классификация элементарных частиц
- •6.3.2. Кварковая модель
- •6.4. Фундаментальные взаимодействия и мировые константы
- •6.4.1. Мировые константы
- •6.4.2. Фундаментальные взаимодействия и их роль в природе
- •6.4.3. Из чего же состоит вещество Вселенной?
- •6.4.4. Черные дыры
- •6.5. Модель единого физического поля и многомерность
- •6.5.1. Возможность многомерности пространства
- •6.6. Устойчивость Вселенной и антропный принцип
- •6.6.1. Множественность миров
- •6.6.2. Иерархичность структуры Вселенной
- •6.7. Антивещество во Вселенной и антигалактики
- •6.8. Механизм образования и эволюции звезд
- •6.8.1. Протон-протонный цикл
- •6.8.2. Углеродо-азотный цикл
- •6.8.3. Эволюция звезд
- •6.8.4. Пульсары
- •6.8.5. Квазары
- •Глава 7. Проблема «порядок—беспорядок» в
- •7.1. Неравновесная термодинамика и синергетика
- •7.2. Динамика хаоса и порядка
- •7.3. Модель э. Лоренца
- •7.4. Диссипативные структуры
- •7.6. Реакции Белоусова — Жаботинского
- •7.7. Динамический хаос
- •7.8. Фазовое пространство
- •7.9. Аттракторы
- •7.10. Режим с обострением
- •7.11. Модель Пуанкаре описания изменения состояния системы
- •7.12. Динамические неустойчивости
- •7.13. Изменение энергии при эволюции системы
- •7.14. Гармония хаоса и порядка и «золотое сечение»
- •7.15. Открытые системы
- •7.16. Принцип производства минимума энтропии
- •Глава 8. Симметрия и асимметрия в различных
- •8.1. Симметрия и законы сохранения
- •8.2. Симметрия—асимметрия
- •8.3. Закон сохранения электрического заряда
- •8.4. Зеркальная симметрия
- •8.5. Другие виды симметрии
- •8.6. Хиральность живой и неживой природы
- •8.7. Симметрия и энтропия
- •Глава 9. Современная естественно-научная
- •9.1. Классификация механик
- •9.2. Современная физическая картина мира
- •Часть II. Физика живого и эволюция природы
- •Глава 10. Общие проблемы физики живого
- •Глава 11. От физики существующего к физике
- •11.1. Термодинамические особенности развития живых систем
- •11.1.1. Роль энтропии для живых организмов
- •11.1.2. Неустойчивость как фактор развития живого
- •11.2. Энергетический подход к описанию живого
- •11.2.1. Устойчивое неравновесие
- •11.3. Уровни организации живых систем и системный подход к
- •11.3.1. Иерархия уровней организации живого
- •11.3.2. Метод Фибоначчи как фактор гармонической
- •11.3.3. Физический и биологический методы изучения природы
- •11.3.4. Антропный принцип в физике живого
- •11.3.5. Физическая эволюция л. Больцмана и биологическая
- •11.4. Физическая интерпретация биологических законов
- •11.4.1. Физические модели в биологии
- •11.4.2. Физические факторы развития живого
- •11.5. Пространство и время для живых организмов
- •11.5.1. Связь пространства и энергии для живого
- •11.5.2. Биологическое время живой системы
- •11.5.3. Психологическое время живых организмов
- •11.6. Энтропия и информация в живых системах
- •11.6.1. Ценность информации
- •11.6.2. Кибернетический подход к описанию живого
- •11.6.3. Роль физических законов в понимании живого
- •Глава 12. Физические аспекты и принципы
- •12.1. От атомов к протожизни
- •12.1.1. Гипотезы происхождения жизни
- •12.1.2. Необходимые факторы возникновения жизни
- •12.1.3. Теория абиогенного происхождения жизни а.И. Опарина
- •12.1.4. Гетеротрофы и автотрофы
- •12.2. Химические процессы и молекулярная самоорганизация
- •12.2.1. Химические понятия и определения
- •12.2.2. Аминокислоты
- •12.2.3. Теория химической эволюции в биогенезе
- •12.2.4. Теория молекулярной самоорганизации м. Эйгена
- •12.2.5. Циклическая организация химических реакций и гиперциклы
- •12.3. Биохимические составляющие живого вещества
- •12.3.1. Молекулы живой природы
- •12.3.2. Мономеры и макромолекулы
- •12.3.3. Белки
- •12.3.4. Нуклеиновые кислоты
- •12.3.5. Углеводы
- •12.3.6. Липиды
- •12.3.7. Роль воды для живых организмов
- •12.4. Клетка как элементарная частица молекулярной биологии
- •12.4.1. Строение клетки
- •12.4.2. Процессы в клетке
- •12.4.3. Клеточные мембраны
- •12.4.4. Фотосинтез
- •12.4.5. Деление клеток и образование организма
- •12.5. Роль асимметрии в возникновении живого
- •12.5.1. Оптическая активность вещества и хиральность
- •12.5.2. Гомохиральность и самоорганизация в живых организмах
- •Глава 13. Физические принципы воспроизводства и
- •13.1. Информационные молекулы наследственности
- •13.1.1. Генетический код
- •13.1.2. Гены и квантовый мир
- •13.2. Воспроизводство и наследование признаков
- •13.2.1. Генотип и фенотип
- •13.2.2. Законы генетики г. Менделя
- •13.2.3. Хромосомная теория наследственности
- •13.3. Процессы мутагенеза и передача наследственной информации
- •13.3.1. Мутации и радиационный мутагенез
- •13.3.2. Мутации и развитие организма
- •13.4. Матричный принцип синтеза информационных макромолекул и
- •13.4.1. Передача наследственной информации через репликации
- •13.4.2. Матричный синтез путем конвариантной редупликации
- •13.4.3. Транскрипция
- •13.4.4. Трансляция
- •13.4.5. Отличия белков и нуклеиновых кислот
- •13.4.6. Новый механизм передачи наследственной информации и
- •Глава 14. Физическое понимание эволюционного и
- •14.1. Онтогенез и филогенез. Онтогенетический и популяционный
- •14.1.1. Закон Геккеля для онтогенеза и филогенеза
- •14.1.2. Онтогенетический уровень жизни
- •14.1.3. Популяции и популяционно-видовой уровень живого
- •14.2. Физическое представление эволюции
- •14.2.1. Синтетическая теория эволюции
- •14.2.2. Эволюция популяций
- •14.2.3. Элементарные факторы эволюции
- •14.2.4. Живой организм в индивидуальном и историческом
- •14.2.5. Геологическая эволюция и общая схема эволюции Земли
- •14.3. Аксиомы биологии
- •14.3.1. Первая аксиома
- •14.3.2. Вторая аксиома
- •14.3.3. Третья аксиома
- •14.3.4. Четвертая аксиома
- •14.3.5. Физические представления аксиом биологии
- •14.4. Признаки живого и определения жизни
- •14.4.1. Совокупность признаков живого
- •14.4.2. Определения жизни
- •14.5. Физическая модель демографического развития сп. Капицы
- •Глава 15. Физические и информационные поля
- •15.1. Физические поля и излучения функционирующего организма
- •15.1.1. Электромагнитные поля и излучения живого организма
- •15.1.2. Тепловое и другие виды излучений
- •15.2. Механизм взаимодействия излучений человека с окружающей
- •15.2.1. Электромагнитное и ионизирующее излучения
- •15.2.2. Возможности медицинской диагностики и лечения на
- •15.3. Устройство памяти. Воспроизводство и передача информации в
- •15.3.1. Физические процессы передачи информационного сигнала
- •15.3.2. Физическая основа памяти
- •15.3.3. Человеческий мозг и компьютер
- •Глава 16ю физические аспекты биосферы и основы
- •16.1. Структурная организованность биосферы
- •16.1.1. Биоценозы
- •16.1.2. Геоценозы и биогеоценозы. Экосистемы
- •16.1.3. Понятие биосферы
- •16.1.4. Биологический круговорот веществ в природе
- •16.1.5. Роль энергии в эволюции
- •16.2. Биогеохимические принципы в.И. Вернадского и живое вещество
- •16.2.1. Живое вещество
- •16.2.2. Биогеохимические принципы в.И. Вернадского
- •16.3. Физические представления эволюции биосферы и переход к
- •16.3.1. Основные этапы эволюции биосферы
- •16.3.2. Ноосфера
- •16.3.3. Преобразование биосферы в ноосферу
- •16.4. Физические факторы влияния Космоса на земные процессы
- •16.4.1. Связь Космоса с Землей по концепции а.Л. Чижевского
- •16.5. Физические основы экологии
- •16.5.1. Увеличение антропогенной нагрузки на окружающую
- •16.5.2. Физические принципы ухудшения экологии
- •16.6. Принципы устойчивого развития
- •16.6.1. Оценки устойчивости биосферы
- •16.6.2. Концепция устойчивого развития и необходимость
- •Глава 17. Физические модели самоорганизации в
- •17.1. Экономическая модель длинных волн н. Д. Кондратьева
- •17.2. Обратимость и необратимость процессов в экономике
- •17.3. Синергетические представления устойчивости в экономике
- •17.4. Физическое моделирование рынка
- •17.5. Циклический характер экономических процессов в модели н.Д.
- •17.6. Модель колебательных процессов в экономике
- •Глава 1. Общие представления об естествознании..........5
- •Глава 2. Механика дискретных объектов.....................42
- •Глава 3. Физика полей.......................................73
- •Глава 4. Теория относительности эйнштейна - мост между
- •Глава 5. Основы
- •Глава 6. Физика вселенной.................................122
- •Глава 7. Проблема «порядок-беспорядок» в природе
- •Глава 8. Симметрия и асимметрия в различных физических
- •Глава 9. Современная естественно-научная картина мира с
- •Глава 10. Общие проблемы физики живого.................. 239
- •Глава 11. От
- •Глава 12. Физические аспекты и принципы биологии.......289
- •Глава 13. Физические принципы воспроизводства и развития
- •Глава 14. Физическое понимание эволюционного
- •Глава 15. Физические и информационные поля биологических
- •Глава 16. Физические
- •Глава 17. Физические
13.4.4. Трансляция
Процесс воспроизводства, связанный с использованием генетической информации,
реализуется на следующем этапе. Инструкции в виде матричной тРНК передаются
рибосомам, которые отвечают за синтез клеточного белка. Теперь уже информа-
376 ция о том, как, из чего и когда надо строить белок клетки, т.е. «технологический
проект» строительства белка, заключена в тРНК. Транспортная тРНК переносит
конструкцию из аминокислот к рибосомам, и на рибосомной рРНК синтезируются
молекулы белка. Образно говоря, рибосомы выступают как «фабрика» по производству
молекул белка. Схема биосинтеза белка в рибосоме показана на рис. 13.2. Этот процесс
переноса аминокислот на основе генетического кода информационной тРНК и
Горбачев В. В. Концепции современного естествознания:—М.: ООО «Издательский дом «ОНИКС 21
век»: ООО «Издательство «Мир и Образование», 2003. — 592 с: ил.
Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru
225
образование цепей называется трансляцией. Последовательность нуклеотидов, несущая
информацию в ДНК, определяет через молекулы РНК последовательность аминокислот в
Рис. 13.2. Схема биосинтеза белков.
377 белке. Этот процесс схематически представляется как ДНК <-> РНК -> белок (рис.
13.3).
Таким образом, передача генетических инструкций происходит наиболее сжатым и
экономичным способом по единому принципу конструкции матрицы. Суть матричного
синтеза проста: исходные молекулы ДНК и РНК являются матрицами, рядом с которыми
строятся соответствующие макромолекулы, и «считывание» информации также
происходит матричным способом, так что матрица как чертеж для исполнения (синтеза)
— это изобретение природы, название же потом придумал человек. В молекулярной
биологии эти представления широко используются, и, например, С.Э. Шноль считает, что
выживают матричные элементы, способные к быстрому размножению. Можно сказать,
что и сама жизнь — это матричное копирование с последующей самосборкой копий.
Рис. 13.3. Основные этапы процесса передачи генетической информации.
Горбачев В. В. Концепции современного естествознания:—М.: ООО «Издательский дом «ОНИКС 21
век»: ООО «Издательство «Мир и Образование», 2003. — 592 с: ил.
Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru
226
378
13.4.5. Отличия белков и нуклеиновых кислот
Молекулы нуклеиновых кислот ДНК и РНК образуют линейные последовательности,
а молекулы белка представляют собой трехмерные конструкции. Может быть, это
связано с тем, что в молекулах нуклеиновых кислот основания соединены слабой
водородной химической связью и как бы уже предрасположены к изменчивости, в то
время как молекулы белка — сильной ковалентной связью, обеспечивающей
стабильность и устойчивость его структуры. Кроме того, благодаря хиральности
органических молекул живых организмов, отраженной в их оптической активности и
способности поворачивать плоскость поляризации, молекулы нуклеиновых кислот ДНК и
РНК образуют правую пространственную так называемую D-конфигурацию, а молекулы
белка — левую L-конфигурацию.
Пока науке достоверно не известна причина именно такой хиральности белков и
нуклеиновых кислот. Однако глубокое различие белковых и нуклеиновых макромолекул
в структуре и функциональности позволяет предположить, что они не могли появиться
одновременно в ходе химической эволюции и потому маловероятно их сосуществование
в протобиологической системе. Экспериментально установлено, что полимеры хирально
нечистого состава медленнее растут, менее прочны и быстрее разрушаются, чем хирально
чистые. Может быть, в этом также проявляется стабильность и устойчивость жизни.
Обобщая, можно сказать, что обеспечивают молекулы ДНК и РНК информационное
взаимодействие, а материальную энергетическую структуру жизни составляют белки.
Мутации какого-либо гена в ДНК приводят к сбою генетической программы и через
кодирование могут изменить белки. В результате этого может произойти перестройка
части передаваемой информации или даже ее потеря. Хотя природа предусмотрела,
чтобы (для здорового консерватизма!) мутации были достаточно редкими, они очень
важны для эволюции как начальный источник генетической изменчивости. Жизнь в этом
смысле зависит от точности передачи информации.
В целом под изменчивостью понимают способность живых организмов приобретать
новые признаки и свойства. Она обусловлена взаимосвязью организма с внешней средой.
При этом
379 давно уже было замечено, что по наследству передаются только признаки,
закрепленные
в
наследственной
изменчивости,
а
ненаследственная,
или
модификационная, изменчивость лишь дает возможность организму приспособиться к
окружающей среде. Такие приобретенные каждым организмом признаки не наследуются.
Изменения фенотипа не сказываются на нуклеотидных последовательностях ДНК. Это
похоже на житейскую ситуацию, когда брюнетка перекрашивается в блондинку: фенотип
Горбачев В. В. Концепции современного естествознания:—М.: ООО «Издательский дом «ОНИКС 21
век»: ООО «Издательство «Мир и Образование», 2003. — 592 с: ил.
Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru
227
меняется, а генотип — нет. В молекулярной генетике это объясняется тем, что процесс
передачи наследственной информации идет только от ДНК через РНК к белкам и никогда
наоборот.